PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Promising Insensitive Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the last twenty years military explosives, and energetic materials in general, have changed significantly. Worldwide, research and development programs are active in developing promising insensitive HEMs with higher performance. This has been due to several factors, which include new operational requirements such as Insensitive Munitions (IM), but it is also due to the availability of new materials and to new assessment and modelling techniques. The present review focuses on the basic idea and necessity for IM, and the conditions, technical requirements and tests for IM. The review also explains the various promising insensitive high explosives, their synthesis and formulation used in different propellants.
Rocznik
Strony
821--843
Opis fizyczny
Bibliogr. 100 poz., rys., tab.
Twórcy
  • High Energy Materials Research Laboratory, Pune-411021, India
  • School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, India
  • High Energy Materials Research Laboratory, Pune-411021, India
  • School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, India
Bibliografia
  • [1] Baker, E.; Daniels, A.; Fisher, S.; Alshehab, N.; Wing, N. K.; Fuchs, B.; Cruz, F. Development of a Small Shaped Charge, Insensitive Munitions Threat Test. Procedia Engineering 2015, 103: 27.
  • [2] Klapötke, T. M.; Krumm, B.; Rusan, M.; Sabatini, J. Improved Green-lightemitting Pyrotechnic Formulations Based on Tris-(2,2,2-trinitroethyl)borate and Boron Carbide. Chem. Commun. 2014, 50: 9581.
  • [3] Sabatini, J.; Oyler, K. Recent Advances in the Synthesis of High Explosive Materials. Crystals 2016, 6: 5.
  • [4] Lieb, R.; Baker, P. Combustion Morphology of TNT and Composition B. JANNAF 37th Combustion and 19th Propulsion Systems Hazards Subcommittee Meetings, CA, CPIA Publication, Monterey 2000, 704: 81.
  • [5] An, C.; Guo, X.; Song, X.; Wang, Y.; Li, F. Preparation and Safety of Well Disposed RDX Particles Coated with Cured HTPB. J. Energ. Mater. 2009, 27: 118.
  • [6] Son, S.; Berghout, H.; Bolme, C.; Chavez, D.; Naud, D.; Hiskey, M. Burn Rate Measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc. Combust. Inst. 2000, 28: 919.
  • [7] Matyas, R.; Pachman, J. Primary Explosives. Springer, Heidelberg, Germany 2013; ISBN 978-3-642-28436-6.
  • [8] Hagenlocher, M.; Hölbling, D.; Kienberger, S.; Anhuysse, S.; Zeil, P. Spatial Assessment of Social Vulnerability in the Context of Landmines and Explosive Remnants of War in Battambang Province, Cambodia. International Journal of Disaster Risk Reduction 2016, 15: 148.
  • [9] Yan, Q.; Zeman, S.; Elbeih, A. Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs). Thermochim. Acta 2012, 537: 1.
  • [10] Khasainov, B.; Borisov, A.; Ermolaev, B.; Korotkov, A. Two-phase Visco-plastic Model of Shock Initiation of Detonation in High Density Pressed Explosives. Proc. 7th Int. Detonation Symp. 1981, 435.
  • [11] Alexander, K.; Gibson, K.; Baudle, B. Development of the Variable Confinement Cook-off Test. Report ADB 214791, Naval Surface Warfare Centre Indian Head Div., MD, USA 1996; http://handle.dtic.-mil/100.2/ADB214791.
  • [12] Nouguez, B.; Mahé, B. Achieving STANAG 4439 IM Shaped Charge Requirements on 155 mm Shells: An Update. The 2010 Insensitive Munitions & Energetic Materials Technology Symposium, Munich, October 11-14, 2010.
  • [13] IM Testing − A Guide to Best Practice. Issue 1.0, Document released by the UK’s IM Assessment Panel, DOSG, Abbey Wood, UK 2005.
  • [14] Jurgensen, J. DoD Moving Toward Long Term Goal of IM-Compliant Inventory Programme Manager. November-December 2000.
  • [15] a) Bordachar, S.; Lamy, P. A New Impulse for the French MURAT (IM) Policy. Technical paper, Proc. 2012 Insensitive Munitions & Energetic Materials Technology Symposium, Las Vegas, NV, US, May 2012; b) Klapötke, T. M.; Witkowski, T. Covalent and Ionic Insensitive High Explosives. Propellants Explos. Pyrotech. 2016, 41: 470.
  • [16] NAVSEAINST 8020.5A; Subject: Qualification and Final (Type) Qualification Procedures for Navy Explosive Materials. 10 September 1984.
  • [17] Afanosev, C.; Bobolev, U. Initiation of Solid Explosives by Impact. Israel Program of Scientific Translations, Jerusalem 1971.
  • [18] Bemm, U.; Ostmark, H. 1,1-Diamino-2,2-dinitroethylene: a Novel Energetic Material with Infinite Layers in Two Dimensions. Acta Crystallogr. C 1999, 54: 1997.
  • [19] Dobratz, B.; Finger, M.; Green, L.; Humphrey, J.; McGuire, R.; Rizzo, H. The Sensitivity of Triaminotrinitrobenzene (TATB) and TATB Formulations: Summary and Report. Lawrence Livermore National Laboratory, Livermore, CA, UCID-17808, 1978.
  • [20] Gotfried, J. L. Laboratory-Scale Method for Estimating Explosive Performance from Laser-induced Shock Waves. Propellants Explos. Pyrotech. 2015, 40(5): 674-681.
  • [21] Politzer, P.; Grice, M.; Murray, J.; Lane, P. Computational Investigation of the Structures and Relative Stabilities of Amino/Nitro Derivatives of Ethylene. J. Mol. Struct. (Theochem) 1998, 452: 75.
  • [22] Ostmark, H.; Bergman, H.; Bemm, U.; Goede, P.; Holmgren, E.; Johansson, M.; Langlet, A.; Latypov, N.; Pettersson, A.; Pettersson, M.; Wingborg, N.; Vorde, C.; Stenmark, H.; Karlsson, L.; Hihkio, M. 2,2-Dinitro-ethene-1,1-diamine (FOX-7) − Properties, Analysis and Scale Up. 32nd Int. Annu. Conf. ICT, Karlsruhe 2001.
  • [23] Latypov, N.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Synthesis and Reactions of 1,1-Diamino-2,2-dinitroethylene. Tetrahedron 1998, 54: 11525.
  • [24] Baum, K.; Bigelow, S. S.; Nghi Van, N.; Archibald, T. G.; Gilardi, R.; Flippen-Anderson, J. L.; George, C. Synthesis and Reactions of 1,1-Diiododinitroethylene. J. Org. Chem. 1992, 57: 235-241.
  • [25] Bergman, H.; Ostmark, H.; Pettersson, A.; Petterson, M.-L.; Bemm, U.; Hihkio, M. Some Initial Properties and Thermal Stability of FOX-7. Insensitive Munitions and Energetic Materials Symposium (NDIA), Tampa, Florida, USA 1999.
  • [26] Lamy, P.; Cumming, S.; Zimmer, M. Air Senior National Representative’s Long Term Technology Project on Insensitive High Explosives (Iies): Studies of High Energy Insensitive High Explosives. 27th Int. Annu. Conf. ICT, Karlsrushe, Germany 1996, 1.1-1.14.
  • [27] Lochert, I. FOX-7 – A New Insensitive Explosive. Weapons System Division. Aeronautical and Maritime Research Laboratory, DSTO-TR-1238, 2001.
  • [28] Crawford, M.; Evers, J.; Gobel, M.; Klapötke, T. M.; Mayer, P.; Oehlinger, G.; Welch, J. γ-FOX-7: Structure of a High Energy Density Material Immediately Prior to Decomposition. Propellants Explos. Pyrotech. 2007, 32: 478-495.
  • [29] Wild, R.; Teipel, U. Characterization and Explosive Properties of FOX-7. 35th Int. Annu. Conf. ICT, Karsruhe, Germany 2004, 69.
  • [30] Karlsson, S. Detonation and Sensitivity Properties of FOX-7 and Formulations Containing FOX-7. FOI Swedish Defence Research Agency, Grindsjöns Research Center, SE-147 25 Tumba, Sweden 2002.
  • [31] Evers, J.; Klapötke, T. M.; Mayer, P.; Oehlinger, G.; Welch, J. α and ß-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K. Inorg. Chem. 2006, 45: 4996.
  • [32] Trzcinski, W. A.; Belaada A. 1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) – Properties and Formulations (a Review). Cent. Eur. J. Energ. Mater. 2016, 13(2): 527.
  • [33] Mishra, V.; Vadali, S.; Garg, R.; Joshi, V.; Wasnik, R.; Asthana, S. Studies on FOX-7 Based Melt Cast High Explosives Formulations. Cent. Eur. J. Energ. Mater. 2013, 10(4): 569.
  • [34] Santhosh, G.; Venkatachalam, S.; Kanakavel, M.; Ninan, K. Study on the Formation of Dinitramide Using Mixed Acid Nitrating Agents. Indian J. Chem. Technol. 2002, 9: 223.
  • [35] Bottaro, J. Recent Advances in Explosives and Solid Propellants. Chem. Ind. 1996, 10: 249.
  • [36] Badgujar, D.; Talawar, M. Thermal Analysis and Sensitivity Studies on Guanylurea Dinitramide (GUDN or FOX-12) Based Melt Cast Explosive Formulations. Cent. Eur. J. Energ. Mater. 2017, 14(2): 296-303.
  • [37] Zhao, F.; Chen, P.; Yuan, H.; Gao, S.; Hu, R.; Shi, Q. Thermochemical Properties and Non-isothermal Decomposition Reaction Kinetics of N-Guanylurea Dinitramide (GUDN). (in Chinese) Chin. J. Chem. 2004, 22: 136.
  • [38] Ostmark, H.; Bemm, U.; Bergman, H.; Langlet, A. N-Guanylurea-Dinitramide: A New Energetic Material with Low Sensitivity for Propellants and Explosives Applications. Termochim. Acta 2002, 384: 253-259.
  • [39] Vadhe, P.; Manickam, S.; Rahujade, N.; Kondra, A.; Prasad, U.; Sinha, R. Studies on Tungsten Based High Density Cast Polymer Bonded Explosive (PBX) Formulations. Cent. Eur. J. Energ. Mater. 2015, 12(3): 497.
  • [40] Badgujar, D.; Wagh, R.; Pawar, S.; Sikder, A. Process Optimization for the Synthesis of GUDN. Propellants Explos. Pyrotech. 2014, 39(5): 658.
  • [41] a) Sanderson, A.; Hajik, R.; Highsmith, T.; Johnston, H. Synthesis for 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5,5,0,05,9,03,11]-dodecane. Patent US 6512113, 2003; b) Deshmukh, M. B.; Borse, A. U.; Mahulikar, P. P.; Dalal, D. S. An Improved and Scalable Synthesis of Insensitive High Explosive 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX). Org. Process Res. Dev. 2016, 20(7): 1363.
  • [42] Wardle, R.; Hajik, R.; Highsmith, T.; Hinshaw, J. Process for Large Scale Synthesis of 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5,5,0,05,9,03, 11]-dodecane. Patent US 6107483, 1999.
  • [43] Mukundan, T.; Purandare, G.; Nair, J.; Pansare, S.; Sinha, R.; Singh, H. Explosive Nitrotriazolone Formulates. Defence Sci. J. 2002, 52(2): 127-133.
  • [44] Antic, G.; Dzingalasevic, V. Characteristics of Cast PBX with Aluminium. Scientific Technical Review, 2006, LVI (3-4): 52.
  • [45] Mitchel, A. R.; Coburn, M. D.; Schmidt, R. D.; Pagoria, P. F.; Lee, G. S. Advances in the Chemical Conversion of Surplus Energetic Materials to Higher Value Products. Thermochim. Acta 2002, 384(1-2): 205-217.
  • [46] Bouma, R. H. B.; van der Heijden, A. E. D. M. The Effect of RDX Crystal Defect Structure on Mechanical Response of a Polymer-Bonded Explosive. Propellants Explos. Pyrotech. 2016, 41(3): 484.
  • [47] Moulard, H. Particular Aspect of the Explosive Particle Size Effect on Shock Sensitivity of Cast PBX Formulations. Proc. 9th Symp. (Int.) Detonation, August 28-September 1, Portland, Oregon 1989.
  • [48] Steen, A.; Skjold, E. RDX Particle Shape and the Sensitivity of PBXs. Joint Governmental Industry Symposium on Insensitive Munitions Technology (Addendum Proc.), White Oak 1990.
  • [49] Doherty, R.; Watt, D. Minutes of the RS-RDX Round Robin (R4). Technical Meeting 2, Bristol April 24th 2006, MSIAC Report L 129, May 2006.
  • [50] Lochert, I.; Franson, M.; Hamshere, B. Assessment of Australian Insensitive RDX. Insensitive Munitions and Energetic Materials Symposium, Orlando 2003.
  • [51] Halvorsen, T. RS-RDX: The Crystal Quality Influence on the Processing and Sensitivity in both Cast-cured and Pressable PBX Compositions. Insensitive Munitions & Energetic Materials Technology Symposium, San Francisco 2004.
  • [52] Spyckerelle, C.; Freche, A.; Eck, G.; Boutry, C. Ageing of I-RDX and of Compositions Based on I-RDX. 35th Int. Annu. Conf. ICT, Karlsruhe 2004, Presentation 38.
  • [53] Gjersllle, R.; Hanssen, M. Analyses Performed to Recognize Reduced Sensitivity RDX from Standard RDX. Publisher: DSTO, Meppen 2003.
  • [54] Holland, R.; Branes, P.; Moss, R.; Sharp, M. Explosive Booster’s Selection Criteria for Insensitive Munition Applications, Insensitive Munitions and Energetic Materials Technology Symposium, Bristol, UK, April, 24-28, 2006.
  • [55] Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. Advances in Science and Technology of Modern Energetic Materials: an Overview. J. Hazard Mater. 2008, 151(2-3): 289-305.
  • [56] Millar, R.; Philbin, S.; Claridge, R.; Hamid, J. Studies of Novel Heterocyclic Insensitive High Explosive Compounds: Pyridines, Pyrimidines, Pyrazines and Their Bicyclic Analogues. Propellants Explos. Pyrotech. 2004, 29: 81.
  • [57] Philbin, S.; Millar, R.; Coombes, R. G. Preparation of 2,5-Diamino-3,6-Dinitropyrazine (ANPZ-i): a Novel Candidate High Energy Insensitive Explosive. Propellants Explos. Pyrotech. 2000, 25(6): 302.
  • [58] Ritter, H.; Licht, H. Synthesis and Reactions of Dinitrated Amino and Diaminopyridines. J. Heterocycl. Chem. 1995, 32: 585.
  • [59] Hollins, R.; Merwin, L.; Nissan, R.; Wilson, W.; Gilardi, R. Aminonitropyridines and Their N-oxides. J. Heterocycl. Chem. 1996, 33: 895.
  • [60] Tran, T. D.; Pagoria, P. F.; Hoffman, D. M.; Cutting, J. L.; Lee, R. S.; Simpson, R. L. Characterization of 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) as an Insensitive High Explosive. 33rd Proc. Int. Annu. Conf. ICT, Karlsruhe, Germany 2002.
  • [61] Wang, H.; Wang, Y.; Li, Y.; Liu, Y.; Tan, Y. Scale-up Synthesis and Characterization of 2,6-Diamino-3,5-dinitropyrazine-1-oxide. Def. Technol. 2014, 10(4): 343-348.
  • [62] Lin, H.; Zhu, S.; Li, H.; Peng, X. Structure and Detonation Performance of a Novel HMX/LLM-105 Cocrystal Explosive. J. Phys. Org. Chem. 2013, 26(11): 898.
  • [63] Pagoria, P.; Mitchell, A.; Schmidt, R. Synthesis, Scale-up and Characterization of 2,6-Diamino-3,5-dinitropyrazine-l-oxide (LLM-105). JOWOG 9, Aldermaston, England, June 22-26, 1998.
  • [64] Thompson, D. G.; Schwarz, R. B.; Brown, G. W.; Deluca, R. Time-Evolution of TATB-Based Irreversible Thermal Expansion (Ratchet Growth). Propellants Explos. Pyrotech. 2015, 40(4): 558.
  • [65] Pagoria, P.; Mitchell, A.; Schmidt, R.; Fried, L. Munitions Technology Development Program. UCRL-ID-103483-99, p. II-5, 1999.
  • [66] Sinditskii, V.; Smirnov, S.; Egorshev, V. Thermal Decomposition of NTO: An Explanation of the High Activation Energy. Propellants Explos. Pyrotech. 2007, 32(4): 277.
  • [67] Williams, G.; Palopoli, S.; Brill, T. Thermal Decomposition of Energetic Materials, Conversion of Insensitive Explosives (NTO, ANTA) and Related Compounds to Polymeric Melon-like Cyclic Azine Burn-rate Suppressants. Combust. Flame 1994, 98(3): 197.
  • [68] Pevzner, M.; Kulibabina, T.; Povarova, N.; Kilina, L. Nitration of 5-Amino-1,2,4-Triazole and 5-Acetamido-Triazole with Acetyl Nitrate and Nitronium Salts. Khim. Geterotsikl. Soedin. 1979, 8: 1132.
  • [69] Lee, K.; Storm, C. Preparation and Properties of 3-Amino-5-nitro-1,2,4-triazole. Los Alamos National Laboratory, Report LA-1 1907-MS, 1990.
  • [70] Lee, K.; Storm, C.; Hiskey, M.; Coburn, M. An Improved Synthesis of 5-Amino-3-nitro-1H-1,2,4-triazole (ANTA), a Useful Intermediate for the Preparation of Insensitive High Explosives. J. Energ. Mater. 1991, 9(5): 415.
  • [71] Sorescu, D.; Boatz, J.; Thompson, D. Classical and Quantum Mechanical Studies of Crystalline FOX-7 (1,1-Diamino-2,2-dinitroethylene). J. Phys. Chem. 2001, 105(20): 5010.
  • [72] Boddu, V.; Viswant, D.; Ghosh, T.; Damavarapu, R. 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) and TATB-based Formulations – A Review. J. Hazard. Mater. 2010, 181(1-3): 1.
  • [73] Mitchell, A. R.; Pagoria, P. F.; Schmidt, R. D. Vicarious Nucleophilic Substitution to Prepare 1,3-Diamino-2,4,6-trinitrobenzene or 1,3,5-Triamino-2,4,6-trinitrobenzene. Patent US 5,569,783, 1996.
  • [74] Dobratz, B. The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization − 1888 to 1994. Report LA-13024H Los Alamos National Laboratory, August 1994.
  • [75] Aminov, Y.; Gorshkov, M.; Zaikin, V.; Rykonanov, G. Deceleration of Detonation Products of a TATB-based High Explosive. Combust., Explos. Shock Waves (Engl. Transl.) 2004, 38(2): 235.
  • [76] Kaye, S. Encyclopaedia of Explosives and Related Items. ARDEC, Dover, NJ 1980, Vol. 9, T34-T55.
  • [77] Voreck, W.; Brooks, J. E.; Eberhardt, J. R.; Rezaie, H. A. Shaped Charge for a Perforating Gun Having a Main Body of Explosive Including TATB and a Sensitive Primer. Patent US 5597974, 1997.
  • [78] Pagoria, F. P.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. A Review of Energetic Materials Synthesis. Thermochim. Acta 2002, 384: 187-204.
  • [79] Han, T.; Pagoria, P.; Gash, A.; Maiti, A.; Orme, C.; Mitchell, A.; Fried, L. The Solubility and Recrystallization of 1,3,5-Triamino-2,4,6-trinitrobenzene in a 3-Ethyl-1-methylimidazolium Acetate-DMSO Co-solvent System. New J. Chem. 2009, 33: 50.
  • [80] Coburn, M. Picrylamino-substituted Heterocycles. II. Furazans. J. Heterocycl. Chem. 1968, 5: 83.
  • [81] Solodyuk, G., Bolydrev, M.; Gidaspov, B.; Nikolaev, V. Oxidation of DAF with Hydrogen Peroxide under Various Conditions Yields 3-Amino-4-nitrofurazan (ANF); d.d’-diamino-SA’-azoxyfurazan (DAAF); or Diamino-SA’-azofurazan (DAAzF). Zh. Org. Khim. 1981, 17(4): 756.
  • [82] Hiskey, M.; Chavez, D. E.; Bishop, R. L.; Kramer, J. F.; Kinkead, S. A. Use of 3,3’-Diamino-4,4’-azoxyfurazan and 3,3’-Diamino-4,4’-azofurazan as Insensitive High Explosive Materials. Patent US 6358339 B1, 2002.
  • [83] Novikova, T.; Melnikova, T.; Kharitonova, O.; Kulapina, V.; Aleksandrova, N.; Sheremetev, A.; Pivina, T.; Khnmelnitskii, L.; Xovikov, S. An Effective Method for the Oxidation of Aminofurazans to Nitrofurazans. Mendeleev Commun. 1994, 1: 138.
  • [84] Fried, E.; Glaesemann, K.; Howard, W.; Souers, P. CHEETAH 4.0 User’s Manual. Lawrence Livermore National Laboratory, 2004.
  • [85] Bhaumik, K.; Akamanchi, K. A. 2,4-Dinitroimidazole: Microwave Assisted Synthesis and Use in Synthesis of 2,3-Dihydro-6-nitroimidazo[2,1-b]oxazole Analogues with Antimycobacterial Activity. J. Heterocycl. Chem. 2004, 41: 51-55.
  • [86] Licht, H.; Ritter, H. Synthesis and Explosive Properties of Dinitrobitriazole. Propellants Explos. Pyrotech. 1997, 22: 333.
  • [87] Talawar, M.; Sivabalan, R.; Asthana, S.; Singh, H. Novel Ultra High Energy Materials. Combust., Explos. Shock Waves (Engl. Transl.) 2005, 41: 264.
  • [88] Cho, S.; Cheun, Y.; Park, B. A Computational Study of Imidazole, 4-Nitroimidazole, 5-Nitroimidazole and 4,5-Dinitroimidazole. J. Mol. Struct. (Theochem) 1998, 41: 432.
  • [89] Bulusu, S.; Damavarapu, R.; Autera, J.; Behrens, Jr. R.; Minier, L.; Villanueva, J.; Jayasuriya, K.; Axenrod, T. Thermal Rearrangement of 1,4-Dinitroimidazole to 2,4-Dinitroimidazole: Characterization and Investigation of the Mechanism by Mass Spectrometry and Isotope Labeling. J. Phys. Chem. 1995, 99(14): 5009.
  • [90] Fischer, N.; Fischer, D.; Klapötke, T. M.; Piercey, D.; Stierstorfer, J. Pushing Limits of Energetic Materials − Synthesis and Characterization of Dihydroxyammonium 5,5’-Bistetrazole-1,1-diolate. J. Mat. Chem. 2012, 22: 20418.
  • [91] Klapötke, T. M.; Fischer, N.; Piercey, D.; Stierstorfer, J.; Reymann, M. Energetic Active Mass, Useful as an Explosive, Comprises a Dihydroxylammonium Salt or Diammonium Salt of 5,5’-Bistetrazol-1,1’-diol, 5,5’-Bistetrazol-1,2’-diol, or 5,5’-Bistetrazol-2,2’-diol or a Mixture of at Least Two of These Salts. Patent DE 102011081254-A1, 2013.
  • [92] Badgujar, D. M.; Talawar, M. Thermal and Sensitivity Study of Dihydroxyl Ammonium 5,5’-Bistetrazole-1,1’-diolate (TKX-50) Based Melt Cast Explosive Formulations. Propellants Explos. Pyrotech. 2017, 42(8): 883-888.
  • [93] Wang, H.; Jian, G.; Egan, G. C.; Zachariah, M. R. Assembly and Reactive Properties of Al/CuO Based Nanothermite Microparticles. Combust. Flame 2014, 8(161):2203-2208.
  • [94] Takahashi, K. Micro Thruster for Miniaturized Space Systems – Need and Perspective. 4th Int. Workshop on Micro and Nano Technology for Power Generation and Energy Conservation Applications. Power MEMS, Kyoto, Japan 2004.
  • [95] Courtney, A.; Courtney, M. Comparing Blast Pressure Variations of Lead Styphnate Based and Diazodinitrophenol Based Primers. WSTIAC Journal 2011, 11(2): 3-5.
  • [96] Mochalin, V.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nature Nanotechnology 2012, 7: 11.
  • [97] Yazici, R.; Kalyon, D. Quantitative Characterization of Degree of Mixedness of LOVA Grains. J. Energ. Mat. 1996, 14: 57.
  • [98] Pillai, A.; Joshi, M.; Barve, A.; Velapure, S.; Karir, J. Cellulose Acetate Binder-Based LOVA Gun Propellant for Tank Guns. Def. Sci. J. 1999, 49(2): 141-149.
  • [99] Gannaway, M. CL-20: A Promising New Energetic Material. CPIA Pub 560, Chemical Propulsion Information Agency, Columbia, MD, May 1991.
  • [100] Horst, A.; Baker, P.; Rice, B.; Kaste, P.; Colburn, J.; Hare, J. Insensitive High Energy Propellants for Advanced Gun Concepts. 19th Int. Symposium of Ballistics, Interlaken, Switzerland 2001, 17-24.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5120cd5b-7411-4de6-9991-3a877183a8f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.