Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The current research is focused on the creeping motion of fluid past a permeable spheroidal particle that has an impermeable core under the magnetic forces. Motion in the permeable zone is proposed to be regulated by Darcy’s law. At the fluid-porous interface, the continuity of the normal velocity component is assumed together with the balance of pressure with normal stresses and the Beavers–Joseph–Saffman–Jones (BJSJ) slip boundary condition. Vanishing of the normal component of velocity is used at the surface of the impermeable core. The drag on the spheroidal particle is obtained in an analytical form. The reliability of the drag coefficient on significant physical parameters such as permeability, non-sphericity parameter, Hartmann numbers, separation parameter (the measure of closeness between the porous particle and the core), and slip parameters is examined. Comparisons of results are made with the cases having no magnetic effect and show that the applied magnetic field possesses the ability to reduce the rate of flow of fluid. Well-known previously published results are deduced from the current analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
599--633
Opis fizyczny
Bibliogr. 76 poz., rys. kolor., wykr.
Twórcy
autor
- Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India
autor
- Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India
Bibliografia
- 1. M. Gholinia, M.E. Hoseini, S. Gholinia, A numerical investigation of free convection MHD flow of Walters-B nanofluid over an inclined stretching sheet under the impact of Joule heating, Thermal Science and Engineering Progress, 11, 272–282, 2019.
- 2. Roberts, Paul Harry, An Introduction to Magnetohydrodynamics, 6, Longmans, London, 1967.
- 3. H.P.G. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Delmont, Paris,1856.
- 4. H.C. Brinkman, Calculation of viscous force exerted by flowing fluid on dense swarm of particles, Applied Science Research, A, 27–34, 1947.
- 5. G.S. Beavers, D.D. Joseph, Boundary condition at a naturally permeable wall, Journal of Fluid Mechanics, 30, 197–207, 1967.
- 6. P.G. Saffman, On the boundary condition at the surface of a porous medium, Studies in Applied Mathematics, 50, 93–101, 1971.
- 7. A.I. Leonov, The slow stationary flow of a viscous fluid about a porous sphere, Journal of Applied Mathematics and Mechanics, 26, 564–566, 1962.
- 8. D.D. Joseph, L.N. Tao, The effect of permeability on the slow motion of a porous sphere, Journal of Applied Mathematics and Mechanics, 44, 361–364, 1964.
- 9. D.N. Sutherland, C.T. Tan, Sedimentation of a porous sphere, Chemical Engineering Science, 25, 1948–1950, 1970.
- 10. G. Neale, N. Epstein, Creeping flow relative to permeable spheres, Chemical Engineering Science, 28, 1865–1874, 1973.
- 11. I.P. Jones, Low Reynolds number flow past a porous spherical shell, Mathematical Proceedings of the Cambridge Philosophical Society, 73, 231–238, 1973.
- 12. S.K.L. Rao, T.K.V. Iyengar, The slow stationary flow of incompressible micropolar fluid past a spheroid, International Journal of Engineering Science, 19, 189–220, 1981.
- 13. H. Jacob Masliyah, G. Neale, K. Malysa, T. G. M. Van de ven, Creeping flowover a composite sphere: solid core with porous shell, Chemical Engineering Science, 42,2, 245–253, 1987.
- 14. G.P. Raja Sekhar, T. Amaranath, Stokes flow past a porous sphere with an impermeable core, Mechanics Research Communications, 23, 5, 449–460, 1996.
- 15. Z.G. Feng, E.E. Michaelides, Motion of a permeable sphere at finite but small Reynoldsnumbers, Physics of Fluids, 10, 6, 1375–1383, 1998.
- 16. W. Jager, A. Mikelic, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM Journal on Applied Mathematics, 60, 4, 1111–1127, 2000.
- 17. P. Vainshtein, M. Shapiro, C. Gutfinger, Creeping flow past and within a permeable spheroid, International Journal of Multiphase Flow, 28, 1945–1963, 2002.
- 18. A. Bhattacharyya, G.P. Raja Sekhar, Viscous flow past a porous sphere with animpermeable core: effect of stress jump condition, Chemical Engineering Science, 59, 4481–4492, 2004.
- 19. S. Senchenko, H.J. Keh, Slipping Stokes flow around a slightly deformed sphere, Physicsof Fluids, 18, 8, 088104, 2006.
- 20. A.C. Srivastava, N. Srivastava, Flow of a viscous fluid at small Reynolds number pasta porous sphere with a solid core, Acta Mechanica, 186, 161–172, 2006.
- 21. D. Srinivasacharya, Flow past a porous approximate spherical shell, Zeitschrift fur Angewandte Mathematik und Physik, 58, 646–658, 2007.
- 22. J.M. Urquiza, D.N. Dri, A. Garon, M.C. Delfour, Coupling Stokes and Darcyequations, Applied Numerical Mathematics, 58, 525–538, 2008.
- 23. V.M. Shapovalov, Viscous fluid flow around a semipermeable sphere, Journal of Applied Mechanics and Technical Physics, 50, 4, 584–588, 2009.
- 24. Y. Cao, M. Gunzburger, F. Hua, X. Wang, Coupled Stokes-Darcy model with Beavers–Joseph interface boundary condition, Communications in Mathematical Sciences,8, 1, 1–25, 2010.
- 25. E.I. Saad, Translation and rotation of a porous spheroid in a spheroidal container, Canadian Journal of Physics, 88, 689–700, 2010.
- 26. A.S. Vereshchagin, S.V. Dolgushev, Low velocity viscous incompressible fluid flowaround a hollow porous sphere, Journal of Applied Mechanics and Technical Physics, 52,3, 406–414, 2011.
- 27. J. Prakash, G.P. Raja Shekar, M. Kohr, Stokes flow of an assemblage of porous particles: stress jump condition, Zeitschrift fur angewandte Mathematik und Physik, 62,1027–1046, 2011.
- 28. P.K. Yadav, S. Deo, Stokes flow past a porous spheroid embedded in another porousmedium, Meccanica, 47, 6, 1499–1516, 2012.
- 29. E.I. Saad, Stokes flow past an assemblage of axisymmetric porous spheroidal particle incell models, Journal of Porous Media, 15, 9, 849–866, 2012.
- 30. D. Srinivasacharya, M.K. Prasad, Creeping motion of a porous approximate sphere with an impermeable core in a spherical container, European Journal of Mechanics B/Fluids, 36, 104–114, 2012.
- 31. D. Srinivasacharya, M.K. Prasad, Axisymmetric creeping flow past a porous approximate sphere with an impermeable core, The European Physical Journal Plus, 128, 9,2013.
- 32. D. Srinivasacharya, M.K. Prasad, Axisymmetric motion of a porous approximatesphere in an approximate spherical container, Archive of Mechanics, 65, 6, 485–509, 2013.
- 33. H.H. Sherief, M.S. Faltas, E.I. Saad, Slip at the surface of an oscillating spheroidal particle in a micropolar fluid, ANZIAM Journal, 55(E), E1–E50, 2013.
- 34. J. Prakash, G.P. Raja Shekar, Estimation of the dynamic permeability of an assembly of permeable spherical porous particle using cell model, Journal of Engineering Mathematics, 80, 63–73, 2013.
- 35. P.K. Yadav, S. Deo, M.K. Yadav, A. Filippov, On hydrodynamic permeability ofa membrane built up by porous deformed spheroidal particles, Colloid Journal, 75, 5,611–622, 2013.
- 36. P.C. Chen, Fluid extraction from porous media by a slender permeable prolate-spheroid, Extreme Mechanics Letter, 4, 124–130, 2015.
- 37. M. Rasoulzadeh, F.J. Kuchuk, Effective permeability of a porous medium with spherical and spheroidal Vug and fracture inclusion, Transport in Porous Media, 116, 313–644,2017.
- 38. A. Tiwari, P.K. Yadav, P. Singh, Stokes flow through assemblage of non-homogeneous porous cylindrical particle using cell model technique, National Academy Science Letter,4, 1, 53–57, 2018.
- 39. M.K. Prasad, M. Kaur, Cell models for viscous fluid past a micropolar fluid spheroidal droplet, Journal of the Brazilian Society of Mechanical Science and Engineering, 40, 114,2018.
- 40. P.K. Yadav, A. Tiwari, P. Singh, Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer, Acta Mechanica, 229, 4, 1869–1892, 2018.
- 41. S. Khabthani, A. Sellier, F. Feuillebois, Lubricating motion of a sphere towardsa thin porous slab with Saffman slip condition, Journal of Fluid Mechanics, 867, 949–968,2019.
- 42. M.C. Lai, M.C. Shiue, K.C. Ong, A simple projection method for the coupled Navier–Stokes and Darcy flows, Computational Geosciences, 23, 21–33, 2019.
- 43. M.K. Prasad, T. Bucha, Steady viscous flow around a permeable spheroidal particle, International Journal of Applied and Computational Mathematics, 5, 109, 2019.
- 44. M.K. Prasad, Boundary effects of a nonconcentric semipermeable sphere using Happeland Kuwabara cell models, Applied and Computational Mechanics, 15, 2021.
- 45. K.R Cramer, S.I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw-Hill, New York, 1973.
- 46. P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press,Cambridge, 2001.
- 47. S. Globe, Laminar steady state magnetohydrodynamic flow in an annular channel, Physics of Fluids, 2, 404–407, 1959.
- 48. R.R. Gold, Magnetohydrodynamic pipe flow, part I, Journal of Fluid Mechanics, 3, 505–512, 1962.
- 49. N. Rudraiah, B.K. Ramaiah, B.M. Raja Shekar, Hartmann flow over a permeablebed, International Journal of Engineering Sciences, 13, 1, 1975.
- 50. K. Haldar, S.N. Ghosh, Effect of a magnetic field on blood flow through an indented tube in the presence of erythrocytes, Indian Journal of Pure and Applied Mathematics,25, 345, 1994.
- 51. H.P. Mazumdar, U.N. Ganguly, S.K. Venkatesan, Some effect of a magnetic fieldon the flow of a Newtonian fluid through a circular fluid, Indian Journal of Pure andApplied Mathematics, 27, 5, 519–524, 1996.
- 52. G.E. Geindreau, J.L. Aurialt, Magnetohydrodynamic flows in porous media, Journal of Fluid Mechanics, 466, 343–363, 2002.
- 53. V.K. Verma, S. Datta, Magnetohydrodynamic flow in a channel with varying viscosityunder transverse magnetic field, Advance Theory of Applied Mechanics, 3, 53–66, 2010.
- 54. D.V. Jayalakshmamma, P.A. Dinesh, M. Sankar, Analytical study of creeping flow past a composite sphere: solid core with porous shell in presence of magnetic field, Mapana Journal of Science, 10, 2, 11–24, 2011.
- 55. B.G. Srivastava, S. Deo, Effect of magnetic field on the viscous fluid flow in a channel filled with porous medium of variable permeability, Applied Mathematics and Computations, 219, 8959–8964, 2013.
- 56. B.G. Srivastava, P.K. Yadav, S. Deo, P.K. Singh, A. Filippov, Hydrodynamic permeability of a membrane composed of porous spherical particles of uniform magnetic field, Colloid Journal, 76, 6, 725–738, 2014.
- 57. V.K. Verma, S.K. Singh, Magnetohydrodynamic flow in a circular channel filled witha porous medium, Journal of Porous Media, 18, 9, 923–928, 2015.
- 58. P.K. Yadav, S. Deo, S.P. Singh, A. Filippov, Effect of magnetic field on the hydrodynamic permeability of a membrane built up by porous spherical particles, Colloid Journal,79, 1, 160–171, 2017.
- 59. E.I. Saad, Effect of magnetic fields on the motion of porous particles for Happel and Kuwabara models, Journal of Porous Media, 21, 7, 637–664, 2018.
- 60. M.K. Prasad, T. Bucha, Effect of magnetic field on the steady viscous fluid flow arounda semipermeable spherical particle, International Journal of Applied and Computational Mathematics, 5, 98, 2019.
- 61. M.K. Prasad, T. Bucha, Impact of magnetic field on flow past cylindrical shell usingcell model, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41,320, 2019.
- 62. M.K. Prasad, T. Bucha, Creeping flow of fluid sphere contained in a spherical envelope: magnetic effect, SN Applied Sciences, 1, 1594, 2019.
- 63. P.K. Yadav, Influence of magnetic field on the Stokes flow through porous spheroid: Hydrodynamic permeability of a membrane using cell model technique, International Journal of Fluid Mechanics Research, 47, 3, 273–290, 2020.
- 64. M.K. Prasad, T. Bucha, Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models, Pramana Journal of Physics, 94, 24, 2020.
- 65. M.K. Prasad, T. Bucha, MHD viscous flow past a weakly permeable cylinder using Happel and Kuwabara cell models, Iranian Journal of Science and Technology, Transaction A,Science, 44, 1063–1073, 2020.
- 66. M.K. Prasad, T. Bucha, Effect of magnetic field on the slow motion of a porousspheroid: Brinkman’s model, Archive of Applied Mechanics, 91, 1, 2021.
- 67. T. Bucha, M.K. Prasad, Slow flow past a weakly permeable spheroidal particle in a hypothetical cell, Archive of Mechanical Engineering, 68, 2, 27, 2021.
- 68. M.K. Prasad, M. Kaur, T. Bucha, Slow motion past a spheroid implanted in a Brinkman medium: Slip condition, International Journal of Applied and Computational Mathematics, 7, 162, 2021.
- 69. P.K. Yadav, S. Jaiswal, J.Y. Puchakatla, Flow through membrane built up by impermeable spheroid coated with porous layer under the influence of uniform magnetic field: effect of stress jump condition, European Physics Journal Plus, 136, 27, 2021.
- 70. L. Dragos, Magnetofluid Dynamics, Abacus Press, London, 1975.
- 71. C. Evcin, Ö. Ügur, M. Tezer-Sezgin, Determining the optimal parameters for theMHD flow and heat transfer with variable viscosity and Hall effect, Computers & Mathematics with Applications, 76, 6, 1338–1355, 2018.
- 72. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Englewood Cliffs, Prentice-Hall, NJ, 1965.
- 73. D.A. Nield, A. Bejan, Convection in porous media, Studies in Applied Mathematics 3,Springer, New York, 2006.
- 74. H. Ramkissoon, Slip flow past an approximate spheroid, Acta Mechanica, 123, 227–233,1997.
- 75. K.B. Nakshatrala, M.S. Joshaghani, On interface conditions for flows in coupledfree-porous media, Transport in Porous Media, 130, 577–609, 2019.
- 76. A. Prosperetti, Viscous effects on perturbed spherical flows, Quarterly of Applied Mathematics, 34, 4, 339–352, 1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-511e7fa6-53e1-4948-8c20-84608e9abc81