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The current research is focused on the creeping motion of fluid past a per-
meable spheroidal particle that has an impermeable core under the magnetic forces.
Motion in the permeable zone is proposed to be regulated by Darcy’s law. At the
fluid-porous interface, the continuity of the normal velocity component is assumed
together with the balance of pressure with normal stresses and the Beavers–Joseph–
Saffman–Jones (BJSJ) slip boundary condition. Vanishing of the normal component
of velocity is used at the surface of the impermeable core. The drag on the spheroidal
particle is obtained in an analytical form. The reliability of the drag coefficient on
significant physical parameters such as permeability, non-sphericity parameter, Hart-
mann numbers, separation parameter (the measure of closeness between the porous
particle and the core), and slip parameters is examined. Comparisons of results are
made with the cases having no magnetic effect and show that the applied magnetic
field possesses the ability to reduce the rate of flow of fluid. Well-known previously
published results are deduced from the current analysis.

Key words: spheroid, MHD effect, modified Stokes law, modified Darcy’s law, BJSJ
condition, drag.

Copyright c© 2021 by IPPT PAN, Warszawa

1. Introduction

In the vast expansion and scope of fluid mechanics, the interest in
exploring the class of flows past porous bodies of various shapes is explained
through their applications in science and engineering. In the applications of such
flows, it is most important to know the technique for controlling the condition
of the physical problem under inspection. To control the rate of flow of fluid,
researchers are keenly focusing on the transport properties of fluids. One among
them is the study of the flow of fluid in the existence of applied magnetic forces
known as magnetohydrodynamic flow (MHD). MHD studies the relation between
the magnetic fields and the fluid in motion. The subject evolved rapidly and
turned out to be an important area of conversation for the scientific and academic
community. Also, a resisting force, popularly recognized as the the Lorentz force
comes into play when dealing with the MHD flow. This force acts in a direction
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reverse to the flow generated by the magnetic field [1] as per Lenz’s law (which
says the current that is induced in a circuit because of the change in the magnetic
field is aimed to restrict the alteration in flux and to apply a mechanical force
that restricts the movement) and reduces the velocity of the fluid flow [2].

In the last few decades, classes of problems dealing with flow past porous me-
dia are treated with the utmost care, as such flows can be easily found in nature
and man-made flows like flow through packed beds, oil movement within porous
rocks, porous pellets used in catalytic reactions, sedimentation of particles, solid-
fluid filtration, drug diffusion past human skin, etc. Also, a more precious kind
of membrane having very low permeability that only permits the specific type of
particles to flow is known as a semipermeable membrane. For example, one can
find its application in the process of osmosis, a process that is diffusive in nature.
Applying magnetic effects in such flows seems to have an impact on the pattern
of the flow. Many investigators worked tremendously on the problems concerning
flow past porous bodies. Focusing on the discrepancies while formulating flow
past porous particles in terms of choosing transport governing equations, we
come across an empirical relation proposed by Darcy [3]. Darcy’s law assumes
the component of velocity to be proportional directly to the pressure gradient
where no convective term exists. Hence, this law is well applicable to modeling
problems bearing low permeability. On the contrary, Brinkman’s equation [4],
which is a generalized Darcy’s law, is used for describing problems with a large
shear rate and higher porosity. While dealing with the flow past porous bodies
an interface appears separating the porous body from the pure fluid. Owing to
the study of low permeability problems, a matter of major concern is choosing
the proper boundary conditions. The standard no-slip condition was frequently
applied at the interface. Later, it was claimed that this condition may not always
be useful to completely describe the real phenomena and thus the conditions in-
cluding slip effect were put forward by Beavers and Joseph [5], Saffman [6].

Numerous early works dealing with the porous flow shed light on the variation
of the flow pattern for varying particle geometry [7–12]. Apart from the above
articles, Jacob et al. [13] investigated the slow flow through a sphere bearing
a rigid core with a porous shell. Raja Sekhar and Amarnath [14] investigated
the movement of fluid through a porous sphere containing a solid core by using
Darcy’s law. Feng and Michaelides [15] examined the finite but low Reynolds
number flow past a permeable particle of the spherical structure. Additionally,
Jager and Mikelic [16] made a study to explore the boundary conditions put
forward by Beavers, Joseph, and Saffman. Previously, Vainshtein et al. [17] in-
spected the creeping flow through and inside a permeable spheroidal particle. An
analysis of the Stokes flow around a porous sphere with an impervious core by
employing the stress jump condition has been carried out by Bhattacharyya
and Raja Sekhar [18]. Senchenko and Keh [19] scrutinized the flow past
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a slightly distorted sphere. Srivastava and Srivastava [20] analyzed the fluid
flow past a porous sphere together with an impermeable spherical core by con-
sidering Brinkman’s equation. Srinivasacharya [21] talked about the slow flow
through a porous shell of approximately spherical geometry, which was proposed
to be studied by Darcy’s law. In their work, they took into consideration the fol-
lowing boundary conditions: continuity of normal velocity, Beavers–Joseph slip
condition and the continuity of pressure. Urquiza et al. [22] reported the cou-
pling of the Stokes–Darcy equation while studying the motion in porous media,
where they considered Beavers–Joseph–Saffman conditions. Shapovalov [23]
treated the flow past a semipermeable spherical particle through an analytical
approach and made the use of the boundary conditions as mentioned in [8].
A semipermeable particle is a particle bearing very low permeability such that
the velocity’s tangential component can be considered zero at the interface. The
result shows that the drag force on the semipermeable particle is lower as com-
pared to the drag on a non-permeable particle. Furthermore, Cao et al. [24]
talked about the Coupled Stokes–Darcy model considering Beavers–Joseph slip
condition. Saad [25] analyzed the translational as well as the rotational mo-
tion of the porous spheroid inside a cell and obtained the drag and the couple
experienced on a prolate and an oblate spheroidal cases. Vereshchagin and
Dolgushev [26] tackled the motion of incompressible viscous fluid bearing very
low velocity through a hollow porous sphere, using the slip (Beavers–Joseph) and
the no-slip conditions at the interface. Prakash et al. [27] studied the Stokes
flow past a porous particle by choosing both Brinkman’s and Darcy’s law, sepa-
rately. Under these circumstances, the overall bed (a collection of uniform porous
spheres) permeability has been compared for both cases. Yadav and Deo [28]
made an analysis of the viscous flow past a deformed porous sphere inside a dif-
ferent porous medium. In an article by Saad [29], the investigation of the Stokes
flow past a porous spheroid inside a spheroidal vessel was reported. Flow through
a porous approximate sphere (particle shape deviates from the spherical shape)
bearing an impermeable core both in the bounded and unbounded domains have
been handled by Srinivasacharya and Prasad [30, 31]. The motion of fluid
in the porous media is considered to be ruled by Brinkman’s equation. They ob-
tained the expressions of the drag on the porous approximate spherical particle.
Moreover, Srinivasacharya and Prasad [32] analyzed the flow past a body
of approximately spherical shape inside an approximately spherical container.
Sherief et al. [33] have analyzed the problem concerned about the oscillation
of spheroidal particle inside a micropolar fluid and have paid attention to the
slip on the particle surface. Prakash and Raja Shekar [34] determined the
dynamic permeability for the assemblage of spherical permeable particles by tak-
ing into account the Saffman boundary condition. The bed permeability for the
steady flow is known as the hydrodynamic permeability and for the oscillatory
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motion is the dynamic permeability, which for the latter condition relies on the
frequency parameter and may be a complex valued function. Yadav et al. [35]
investigated the slow motion of fluid through a swarm of porous spheroidal par-
ticles by using the concept of particle in cell. The drag force and the membrane
permeability of porous spheroids are calculated and their dependence on various
flow parameters are calculated. Extracting fluid via porous media through a slen-
der permeable prolate-spheroidal structure was handled by Chen [36]. Applying
Beavers–Joseph–Saffman’s condition, Rasoulzadeh and Kuchuk [37] focused
on finding the effective permeability of a spherical and a spheroidal cavity of
the porous medium that contains fracture inclusion. Also, Tiwari et al. [38]
handled the problem of in-homogeneous porous cylindrical particles by consid-
ering Darcy’s law along with using the Beavers–Joseph slip interface condition.
Besides, Prasad and Kaur [39], in their work of flow past a spheroidal droplet
containing micropolar fluid demonstrated the reliability of the wall correction
factor on several flow parameters. Yadav et al. [40] studied the motion of an
incompressible flow through a membrane of spheroidal particles with a porous
layer. Considering the Saffman’s boundary condition, Khabthani et al. [41] ex-
amined the lubricating motion of a sphere nearing a porous thin slab. Moreover,
Ming et al. [42] made a study on the simple projection technique for understand-
ing the coupling of Navier–Stokes and Darcy flows by implementing the Beavers–
Joseph–Saffman condition. Employing the Beavers–Joseph–Saffman–Jones con-
dition, Prasad and Bucha [43] analyzed the motion of a permeable spheroid
and evaluated an exact expression for the drag force exerted on it. Recently,
Prasad [44] has studied the boundary effects on an eccentric semipermeable
sphere by considering the cell model technique. Cell models are one of the most
regularly used models for reporting the interactions of particles regarding proper
boundary conditions where any typical particle is covered through a hypothetical
liquid envelope by which the hydrodynamic interactions are controlled.

The era of modern science is concerned with studying the MHD principle
to explore the coupling between the magnetic field and fluid flow, as it enjoys
a wider domain of applications in the varying fields of science. Application of
such MHD is also observed in the delivery of drugs to the required area, medical
cure of tumors, cancer, and many more. In the books by Cramer and Pai [45],
Davidson [46], a basic review of MHD flow can be well studied. Various brilliant
works contributed by numerous researchers emphasize the important aspects of
this rapidly growing field [47–51]. Later, Geindreau and Aurialt [52] have
carried the study of the filtration flow through a rigid Darcy’s porous media
by taking into account the MHD effect. From their work, it was observed that
the permeability tensor greatly relies on the Hartmann number and is symmet-
ric and positive definite. Furthermore, several other problems dealing with the
magnetic effect have been considered by Verma and Datta [53], Jayalak-
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shmamma et al. [54], Srivastava and Deo [55]. To assess the impact of the
external magnetic field, Srivastava et al. [56] examined the hydrodynamic per-
meability of a membrane containing porous particles of spherical shape. Verma
and Singh [57] analyzed the problem of a circular channel packed with a porous
medium. Intending to find the effect of magnetic forces, Yadav et al. [58] studied
the hydrodynamic permeability of a membrane composed of spherical particles
having a porous shell. As per one of the recent studies done by Saad [59], the
impact of the magnetic forces on the flow through a porous sphere and cylinder
surrounded by a cell has a dominating effect on the flow pattern. Thereafter,
Prasad and Bucha [60] investigated the MHD influence on the motion of the
fluid past a semipermeable spherical particle and founded an expression for drag.
Subsequently, Prasad and Bucha [61] carried out an analytical investigation
of parallel MHD flow past a cylindrical shell in which the porous region is ruled
by Brinkman’s model. In this evaluation, they observed the substantial effect
of applying the magnetic field on the nature of the flow. In a recent article by
Prasad and Bucha [62], the presence of magnetic forces has been seen to af-
fect the creeping flow of fluid sphere (sphere filled with fluid) and bounded by
a spherical envelope. Yadav [63] has investigated the impact of magnetic field on
movement past a porous spheroid in a cell by using the perturbation method and
has further analyzed the hydrodynamic permeability of the membrane. Hydrody-
namic permeability acting on the weakly permeable sphere and cylinder, due to
the creeping flow of viscous fluid under the magnetic field was mentioned in the
articles by Prasad and Bucha [64, 65]. Recently, Prasad and Bucha [66] have
demonstrated the influence of magnetic forces on the flow of a porous spheroid
governed by Brinkman’s model and further evaluated the drag acting on it. As
the MHD effects are varying with particle geometry, it is of much importance
to explore magnetic fields effect for different configurations of particles. Bucha
and Prasad [67] presented the viscous flow of fluid through a low permeable
spheroid in a spheroidal cell. Prasad et al. [68] gave emphasis on the Stokes
flow past a solid spheroid which is imposed in Brinkman’s porous media.

Currently, we extend the analysis made by Prasad and Bucha [43] for the
fluid motion past a permeable spheroidal particle with an impermeable core in
the presence of the applied magnetic field. Applications of the current study can
be found in energy extraction from geothermal zones, in combustion in an in-
ert porous matrices, in the underground spreading of chemical waste, chemical
catalytic reactors. In the dispersion of cholesterol and other fatty compounds
from human arteries to endothelium, modeling of polymer macromolecule coils
in a solvent. Porous particles in a variety of geometrical shapes, which differ sig-
nificantly from spheres. To understand this concept of practical application, one
must first comprehend how fluid flows past/through a body. And these practical
issues necessitate a system to control the movement of fluid past solid bodies
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with MHD effects [18]. This interdisciplinary topic has gotten a lot of interest
recently because of its wide variety of applications in science and industry. Fluid
and thermal sciences, geothermal, petroleum, and combustion engineering are
all part of the study of porous media in a wide sense. In chemical engineering,
especially in industry, the word that is often used is chemical agglomeration.
The enlargement of solid particles is called agglomeration. A common method
of agglomeration technique involves partial melting, absorption of moisture from
the air, electrostatic adhesion and pressing. Tablets, fertiliser pellets, fly ash, and
charcoal briquettes are just a few examples of products that require agglomera-
tion to form the final product. The submergence of permeable agglomerates in
their treatment means determines their progressive infiltration by the liquid. In
modern metallurgical and metal working operations, the study of MHD flows of
electrically conducting fluids in electric and magnetic fields is very appealing.
This has sparked a lot of interest in the study of boundary layer flows subjected
to external magnetic fields.

This specific problem is chosen as it involves two separate interfaces of inte-
rest: a porous-clear fluid interface on the spheroid’s outer surface, and a porous-
impermeable interface at the core boundary. Also, it is of considerable impor-
tance in the amending of rigid particles in a chemical reactor including different
catalytic solid-gas reaction: specifically sulphuring of dolomite or limestone, and
combustion of oil shale [31]. The further flow through porous particles has plenty
of commercial uses including a filtration procedure, in a broad range for separat-
ing solute from the solvent, in the desalination process for brackish seawater, and
in purifying water, juice, sugars, in treating wastewater, etc. The elimination of
particles and the adherence of chemical species to the surfaces of solid particles
occur during filtration. This procedure results in the emergence of a porous layer
on the solid particles and it directly affects the hydrodynamic drag experienced
by the particles [69]. The current study aims to analyze such flows. In the work
under consideration, the model of fluid flow past a permeable spheroid with an
impenetrable core in presence of magnetic forces is examined. An analytical so-
lution for the drag exercised on such particles has been evaluated. The influence
of several non-dimensional parameters that emerged during the study including
permeability, slip, non-sphericity parameter, the Hartmann number, and sepa-
ration parameters on the behaviour of the coefficient of drag is examined.

2. Problem formulation

Proposed mathematical model
The magnetic effect on the slow, steady, and axisymmetric movement of con-

ducting fluid past a permeable spheroidal particle of radius ra ≡ r = a[1+2εϑ2(ζ)]
with a rigid core of radius rb ≡ r = b[1+2εϑ2(ζ)] is considered where ε and ϑ2(ζ)
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are the non-sphericity parameter and the Gegenbauer function with ζ = cos θ,
and a & b are the radius of the permeable spherical particle and spherical core,
respectively (see Fig. 1). The uniform magnetic field is enforced in the flow’s
transverse direction, and the permeable particle move with uniform velocity U
in the z direction. The magnetic Reynolds number, represented as Rem = Uaµhσ
is assumed to be immensely small in which σ represents fluids electrical conduc-
tivity and µh the magnetic permeability. Further µh is assumed to be the same
for the fluid as well as a porous region. Any applied external electric field is
absent, and the presence of the induced magnetic field is ignored because the
magnetic Reynolds number is considered to be small enough.

Fig. 1. Schematic draft of flow past a permeable oblate spheroid with core with
non-sphericity parameter ε, ϑ2(ζ) the Gegenbauer function and ζ = cos θ.

Spherical polar coordinates (r, θ, φ) together with (er, eθ, eφ) as unit base
vectors are implemented for solving the problem. The viscous fluid region I and
permeable region II are represented by i, in which i = 1, 2, respectively.
The flow is axially symmetric, indicating the independence of all the flow quan-
tities on φ. We employ velocity vectors as

(2.1) v(i) = v(i)
r (r, θ)er + v

(i)
θ (r, θ)eθ, i = 1, 2.

The modified Maxwell equations [2, 45] governing MHD flow are

∇×H = µhJ,(2.2)
∇ · J = 0,(2.3)

∇×E = −∂H
∂t

,(2.4)

∇ ·H = 0.(2.5)
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Also,

(2.6) J = µhσ (E + v ×H) ,

where J, H, E, are the electric current density, magnetic field intensity, and the
electric field, respectively.

As the current (density J) is flowing across the field, H implies that the
Lorentz force F (in case of conducting fluid) per unit volume acts on a spheroid
[2, 70, 71] and is given as

(2.7) F = µhJ×H.

Now, using Eqs. (2.6) and (2.7), we have

(2.8) F = µ2
hσ(E + v ×H)×H.

Moreover, the presence of any external electric field is ignored i.e., E = 0. Thus,

(2.9) F = µ2
hσ (v ×H)×H,

where v is the velocity of the fluid.
The magnetic force present in the fluid momentum equation modifies the

pressure and viscous stress with respect to the problem in absence of a magnetic
field. Here, the modified Stokes equation is a combination of Stokes equation
with the Lorentz force term, and modified Darcy’s equation is a combination of
Darcy’s law with the Lorentz force term. Therefore, the modified Stokes equation
[59, 60, 62, 72] regulates the flow in region I and the modified Darcy equation
[3, 52, 60, 64, 65] regulates the flow in region II. Also, the magnetic field is
considered to be in a transverse direction, therefore H(i) = Hoeφ, i = 1, 2.

Flow governing equations
The equations that regulates the motion in region I are given by modified

Stokes equation as

∇ · v(1) = 0,(2.10)

∇p(1) + µ∇×∇× v(1) − µ2
hσ(v(1) ×H(1))×H(1) = 0.(2.11)

Equations for the movement of fluid in permeable region II regulated by modified
Darcy’s law as

∇ · v(2) = 0,(2.12)

∇p(2) +
µ

k
v(2) − µ2

hσ(v(2) ×H(2))×H(2) = 0,(2.13)
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where v(i), p(i), µ, σ are velocity, pressure, coefficient of viscosity, fluids electric
conductivity, and k the permeability of porous region.

The below mentioned dimensionless variables are applied to transform the
flow governing equations into non-dimensional form,

(2.14) r = ar̃, ∇ =
∇̃
a
,v(i) = U ṽ(i), p(i) =

µU

a
p̃(i), H(i) = Ho H̃

(i)
.

After placing the above substitution in Eqs. (2.10) to (2.13) and skipping the
tildes, the final equations are written as

∇ · v(1) = 0,(2.15)

∇p(1) +∇×∇× v(1) − α2(v(1) ×H(1))×H(1) = 0,(2.16)

∇ · v(2) = 0,(2.17)

∇p(2) + ξ2v(2) − χ2(v(2) ×H(2))×H(2) = 0,(2.18)

where

• α =

√
µ2
hH

2
oσa

2

µ
, the Hartmann number for liquid region I.

• χ =

√
µ2
hH

2
oσa

2

εµ
, the Hartmann number for permeable region II with ε to

be the porosity [59].

• ξ2 =
a2

k
, the dimensionless permeability parameters.

• Also, we represent β2 = ξ2 + χ2.
The spheroidal surface should have the shape of r = a [1 + f(θ)] [72]. It has
a slightly different shape from the spherical surface r = a. Normally, the or-
thogonality relationships of Gegenbauer functions ϑm(ζ), ζ = cos θ allow us to
investigate the expansion f(θ) =

∑∞
k=2 αkϑk(ζ) [29, 43, 66, 74].

In the equation above, the Gegenbauer function in respect to the Legendre
function Pn(ζ) is represented as

(2.19) ϑn(ζ) =
Pn−2(ζ)− Pn(ζ)

2n− 1
, n ≥ 2.

Thus, the spheroidal surface can be picked as

(2.20) r = a[1 + αmϑm(ζ)] ≡ ra

and the radius of the deformed core as

(2.21) r = b[1 + αmϑm(ζ)] ≡ rb
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along with the coefficient αm predicted to be sufficiently small so that squares and
higher powers of αm’s are ignored, i.e., neglecting the terms of O(α2

m) [72, 74].
Further, (r/a)l ≈ 1 + lαmϑm(ζ) in which l is either positive or negative.

The solution for r = a[1 +
∑

m αmϑm(ζ)] can be constructed from the result
of (2.20) and (2.21).

Let ψ(i) be the stream functions for liquid and permeable regions, respectively
with i = 1, 2.

The stream functions in correspondence to the velocity components are

(2.22) v(i)
r =

1

r2

∂ψ(i)

∂ζ
, v

(i)
θ =

1

r
√

1− ζ2

∂ψ(i)

∂r
, i = 1, 2.

The removal of the pressure terms p(1) and p(2) from Eqs. (2.16) and (2.18),
produces

E2(E2 − α2)ψ(1) = 0,(2.23)

E2ψ(2) = 0,(2.24)

in which, E2 =
∂2

∂r2
+

1− ζ2

r2

∂2

∂ζ2
is the Stokes operator.

3. Boundary conditions

The need to evaluate the flow velocity while studying flow through the per-
meable spheroidal particle requires proper boundary conditions that support the
physics and mathematics of the problem. While studying the flow regulated by
Darcy’s law, the frequently used condition of pressure continuity p(1) = p(2) is
suitable for the flow past a perfect sphere but for the case of a low permeable
spheroidal particle this condition seems not to be suitable. Therefore, to consider
the effect of deformation the jump condition for pressure n · t(1) · n = −p(2) i.e.,
the normal stress in the fluid area is balanced with the pressure in the perme-
able area is considered, where t(1) represents the stress tensor for the viscous
fluid [37, 43]. The pressure jump condition expresses the balancing of two forces
along the normal direction at the interface: the pressure in the porous region and
the normal component of the normal stress in the fluid region [37]. Thus, the con-
tinuity of normal components of velocities, the proportionality of shear force to
the tangential component of the velocity (Beavers–Joseph–Saffman–Jones con-
dition) [5, 6, 11, 37] and a condition for the jump in pressures [37, 38] are found
to be more realistic.

On an impermeable core’s surface, the vanishing of the normal component of
velocity is considered [14]. This is because, in Darcy’s equation, the velocity vec-
tor field’s normal component can only be evaluated on the interface. However, in
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the Darcy–Brinkman model, the entire velocity vector field can be defined on the
boundary. The mathematical reasoning is that Darcy’s equations contain a first-
order spatial derivative of the velocity field. Meanwhile, the Darcy-Brinkman
model generates a governance equation containing a second-order spatial deriva-
tive of the quoted velocity field [75].

Mathematically, at the spheroidal surface r = a[1 + αmϑm(ζ)], we have the
following boundary conditions

(v(1) − v(2)) · n = 0,(3.1)

n · t(1) · s =
µ

λ
√
k

v(1) · s,(3.2)

n · t(1) · n = −p(2),(3.3)

at the impermeable core of radius r = b[1 + αmϑm(ζ)],

(3.4) v(2) · n = 0.

In the above equation, λ represents the dimensionless slip coefficient which
relies on the character of the porous medium where λ lies in the range of 0.25 and
10 [6, 38, 73]. Precisely, if λ = 0 and low permeability, the problem resembles
the case of flow through a semipermeable spheroidal particle.

Besides, n is defined in such a way that n = er−αm
√

1− ζ2Pm−1(ζ)eθ, is the
unit normal vector at every point on the spheroidal surface r = a[1 + αmϑm(ζ)]
pointing into the fluid [25, 76]. And the normal vector is perpendicular to all
the possible surface tangent vectors at that point. Therefore, s is the arbitrary
tangential vector introduced as s = −αm

√
1− ζ2Pm−1(ζ)er − eθ.

The boundary condition at infinity (r → ∞) for the external stream are
written as

v(1)
r = −U cos θ and v

(1)
θ = U sin θ.

Substituting the previous values of n and s into the Eq. (3.1) to (3.4), we
have boundary conditions in a dimensionless form as

At r = 1 + αmϑm(ζ)

v(1)
r − v(2)

r = αm
√

1− ζ2Pm−1(ζ)(v
(1)
θ − v

(2)
θ ),(3.5)

t
(1)
rθ + αm

√
1− ζ2Pm−1(ζ)(t(1)

rr − t
(1)
θθ )(3.6)

=
ξ1

λ
(v

(1)
θ + v(1)

r αm
√

1− ζ2Pm−1(ζ)),

t(1)
rr − 2αm

√
1− ζ2Pm−1(ζ)t

(1)
rθ = −p(2),(3.7)

and r = η[1 + αmϑm(ζ)], where η = b/a,

(3.8) v(2)
r − αm

√
1− ζ2Pm−1(ζ)v

(2)
θ = 0.
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In relation with stream functions ψ(i), i = 1, 2, the expressions is found as(
∂ψ(1)

∂ζ
− ∂ψ(2)

∂ζ

)
= rαmPm−1(ζ)

(
∂ψ(1)

∂r
− ∂ψ(2)

∂r

)
,(3.9)

2r
∂

∂r

(
1

r

∂ψ(1)

∂r

)
− E2ψ(1)(3.10)

+ 2αmϑ2(ζ)Pm−1(ζ)

(
4

r

∂2ψ(1)

∂r∂ζ
− 6

r2

∂ψ(1)

∂ζ
+

P1(ζ)

rϑ2(ζ)

∂ψ(1)

∂r

)
=
ξ1

λ

(
∂ψ(1)

∂r
+

1

r
(1− ζ2)αmPm−1(ζ)

∂ψ(1)

∂ζ

)
,

−p(1) − 2

r2

[
2

r

∂ψ(1)

∂ζ
− ∂2ψ(1)

∂r∂ζ

]
(3.11)

− 2αmPm−1(ζ)

r

[
2r

∂

∂r

(
1

r

∂ψ(1)

∂r

)
− E2ψ(1)

]
= −p(2),

∂ψ(2)

∂ζ
= αmrPm−1(ζ)

∂ψ(2)

∂r
.(3.12)

4. Mathematical solution

The solutions for the fluid movement in region I and the permeable area
(region II) after solving Eqs. (2.23) and (2.24) are

ψ(1) =

[
r2 +

a2

r
+ b2
√
rK3/2(αr)

]
ϑ2(ζ)(4.1)

+

∞∑
n=3

[
Anr

−n+1 +Bn
√
rKn−1/2(αr)

]
ϑn(ζ),

ψ(2) =

[
c2r

2 +
d2

r

]
ϑ2(ζ) +

∞∑
n=3

[Cnr
n +Dnr

−n+1]ϑn(ζ).(4.2)

The pressure for each of the flows are

p(1) = α2

[(
r − a2

2r2

)
P1(ζ)−

∞∑
n=3

Anr
−n

n
Pn−1(ζ)

]
,(4.3)

p(2) = β2

[(
c2r −

d2

2r2

)
P1(ζ) +

∞∑
n=3

[
Cn

rn−1

n− 1
− Dnr

−n

n

]
Pn−1(ζ)

]
.(4.4)

Inserting expressions (4.1) to (4.4) into the approximate boundary conditions
(3.9) to (3.12), we acquire four equations in four unknown constants that are
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presented in Appendix A. They are enough to decide the unknown constants of
the favoured order for approximation, O(αm). Thus, the stream functions for the
flow field can be found up to O(αm) [25].

Also, it is noteworthy that considering the case of flow past a permeable
sphere with a solid core the coefficients which make a contribution to this flow
case are a2, b2, c2, d2, and the rest of the coefficients must be zero which shows
that the rest of the coefficients in Eqs. (4.1) and (4.2) are of the order O(αm).
Now, by evaluating the leading terms of systems of Eqs. (A.1) to (A.4) given in
Appendix A, we obtain the arbitrary constants a2 to d2. Further, to find these
arbitrary constants, we used the perturbation process to find the rest of the
non-vanishing coefficients An, Bn, Cn, and Dn appearing in Eqs. (A.9) to (A.12)
which corresponds to n = m− 2, m, m+ 2.

At first, the results that deal with the boundaries r = 1 + αmϑm(ζ) and
r = η[1 + αmϑm(ζ)] are obtained. Comparing Eqs. (4.1) and (4.2) with the
expressions that arise in analysing the flow of viscous fluid past a permeable
spherical particle with a core, suggests that the terms consisting of An, Bn,
Cn and Dn for the case n > 2 are extra and does not exist in the flow past
a permeable sphere with a core. Thus, all these coefficients must be of O(αm).
Presently, the movement of fluid past a particle with spheroidal geometry that
slightly deviates from the spherical shape is considered. Thus, the motion of
fluid past a spheroidal particle is anticipated to be moderately varying from
the flow past a sphere. Therefore, when executing the boundary conditions, the
deviations from the spherical form is neglected and put r = 1 in (3.9) to (3.11)
for the terms involving An, Bn, Cn, Dn, and for r = η in Eq. (3.12) for the terms
Cn, Dn for n > 2.

The case in which the spheroid is represented by the boundaries

(4.5) r = 1 +
∞∑
m=2

αmϑm(ζ),

and

(4.6) r = η[1 +
∞∑
m=2

αmϑm(ζ)].

We implement the similar process for all m’s and the stream functions of the
problem is obtained.

5. Spheroidal case

A specific case of the mentioned flow is the study of the movement through
a permeable prolate and an oblate spheroid with a rigid core in the influence of
a magnetic field.
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In the Cartesian coordinate system, the spheroidal surface is

(5.1)
x2 + y2

c2
+

z2

c2(1− ε)2
= 1,

where c and ε are equatorial radius and non-sphericity parameter, respectively.
The value of ε is considerably small that the squares and higher powers of it can
be overlooked. After neglecting the quantities of O(ε2) [74], in a polar coordinate
system, Eq. (5.1) can be expressed as

(5.2) r = a[1 + 2εϑ2(ζ)],

where a = c(1− ε) and ϑ2(ζ) = (sin2 θ)/2.
For 0 < ε ≤ 1, the surface Eq. (5.2) represents an oblate spheroid and is

a prolate spheroid for ε < 0. Further, ε = 0, resembles the equation of the sphere
bearing radius c. This specific condition makes our problem quite easy to find
the solution. To apply the above results, we choose m = 2; αm = 2ε. For m = 2,
the constants A0, B0, C0, D0, will vanish.

The expression for the stream functions using Appendix C are now given as

ψ(1) = [r2 + (a2 +A2)r−1 + (b2 +B2)
√
rK3/2(αr)]ϑ2(ζ)(5.3)

+ [A4r
−3 +B4

√
rK7/2(αr)]ϑ4(ζ),

ψ(2) = [(c2 + C2)r2 + (d2 +D2)r−1]ϑ2(ζ) + [C4r
4 +D4r

−3]ϑ4(ζ),(5.4)

and the pressure terms are

p(1) = α2

[(
r −

(
a2 +A2

2r2

))
P1(ζ)− A4

4r4
P3(ζ)

]
,(5.5)

p(2) = β2

[(
(c2 + C2)r −

(
d2 +D2

2r2

))
P1(ζ) +

(
C4
r3

3
− D4

4r4

)
P3(ζ)

]
.(5.6)

6. Hydrodynamic drag

The flow of magneto-viscous fluid produces a resisting force on the spheroidal
particle and this force (drag force) can be evaluated as [29, 33, 59, 72]

(6.1) FD =

∫
S

(n · t(1)) · k dS,

where n = er − ε sin 2θeθ; dS = 2πa2(1 + 2ε sin2 θ) sin θdθ; k is the unit vector
working in the z direction. Integrating over the surface of the body

r = 1 + 2εϑ2(ζ) = 1 + ε sin2 θ
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(in non-dimensional form), we have

(6.2) FD = 2πa2

×
π∫

0

r2[(trr − εtθr sin 2θ) cos θ − (trθ − εtθθ sin 2θ) sin θ]|r=1+ε sin2 θ sin θdθ.

Simplification, using the stress components and stream function presented in
Eq. (5.3), we derived the following [66, 68]

FD =
2

3
πµUaα2

[
a2 +A2 − 2− 2(b2 +B2)K3/2(α)(6.3)

+
4ε

5

(
−5 + a2 +

b2
α+ 1

(2α2 + α+ 1)K3/2(α)

)]
.

The values of a2, b2, A2, and B2 are obtained by using the steps mentioned
in Appendix A.

Utilising the above values and considering a = c(1 − ε) and thereafter η =
η1(1 + ε), α = α1(1− ε), ξ = ξ1(1− ε), χ = χ1(1− ε), tending to β = β1(1− ε),
the ultimate equation is obtained. Also, η1 = b/c is the separation parameter
(the measure of closeness between the porous spheroidal particle and the core),

α1 =

√
µ2
hH

2
oσc

2

µ
, β2

1 = ξ2
1 + χ2

1, χ1 =

√
µ2
hH

2
oσc

2

εµ
, ξ2

1 =
c2

k
, k1 = ξ−2

1 .

Therefore, the required drag is given below

(6.4) FD = πµUc

[
−(δ1χ1 + δ2λ)

ν5χ1 + λ(ν7 + η1 3ν6 )
+
ε(δ3χ1

2 + δ4λχ1 + δ5λ
2)

δ6λχ1 + δ7λ2 + δ8

]
.

The expressions for symbols νi1 , i1 = 1, . . . , 29, and δj1 , j1 = 1, . . . , 8 are men-
tioned in Appendix C.

Some special results

For validation of our result, a comparison of reduction cases with the previ-
ously published results is shown below:

Under magnetic effect

Case 1: In absence of impermeable core i.e., η1 = 0, the MHD flow past a per-
meable spheroid is achieved and the drag expression is given as

(6.5) FD = −4πµUc

[
((β1

2 + 4)ξ1ω2 + β1
2λ∆3)

λ∆4 + ξ1(ω1 + 2β1
2)

− ε∆1

4∆2

]
.
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The introduced symbols ωi2 , i2 = 1, . . . , 17, ∆j2 , j2 = 1, . . . , 13, and Γ are
mentioned in Appendix B.
Case 2: In absence of slip i.e., λ = 0 in Eq. (6.5), it acts as the MHD flow
through a semipermeable spheroid and the drag expression leads to

(6.6) FD = −4πµUc

[
(β1

2 + 4)ω2

ω1 + 2β1
2 −

εΓ

20ω4

]
.

Case 3: Considering the case for non-sphericity parameter ε = 0 in Eq. (6.5), it
acts as MHD flow past a permeable sphere and the drag is

(6.7) FD = −4πµUc

[
((β1

2 + 4)ξ1ω2 + β1
2λ∆3)

λ∆4 + ξ1(ω1 + 2β1
2)

]
.

Case 4: Further, supposing ε = 0 in Eq. (6.6), it reduces to MHD flow past
a semipermeable sphere and the obtained drag is

(6.8) FD = −4πµUc

[
(β1

2 + 4)ω2

ω1 + 2β1
2

]
.

Case 5: If ξ1 → ∞ and β1 → ∞ in Eq. (6.5), it behaves as a MHD flow past
a solid spheroid and the drag is

(6.9) FD = −2πµUc

[
ω2 −

3ω3ε

5

]
.

It is in accordance with the work of Prasad and Bucha [66].
Case 6: For a non-sphericity parameter ε = 0 in Eq. (6.9), it behaves as MHD
flow past a rigid sphere. The drag so obtained is

(6.10) FD = −2πµUcω2,

which acknowledge the works of Prasad and Bucha [60, 64].

Without magnetic effect

Case 1: If α1 = 0 and χ1 = 0 (i.e., β1 → ξ1) in the expression of drag on MHD
flow past a permeable spheroid with an impermeable core, we obtain the flow in
absence of MHD effect and the drag reduces to

(6.11) FD = −6πµUc

[
2(η1

3 + 2)λξ1
2 + ∆12 ξ1

3λ(2(ξ1
2 + 3) + η1 3(ξ1

2 − 6)) + ∆13 ξ1

− ε(∆11 ξ1
2 + 6∆9λξ1 − 6∆10 λ

2)

5(∆7
2ξ1

2 + 6∆7∆8λξ1 + 9∆8
2 λ2)

]
.

For ε = 0, the flow past a permeable sphere with a core is obtained.
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Case 2: If λ = 0 in Eq. (6.11), we obtain the flow past a semipermeable spheroid
with an impermeable core and the drag is

(6.12) FD = −6πµUc

[
∆12

∆13
− ε

5

∆11

∆7
2

]
.

For ε = 0, the flow past a semipermeable sphere with a core is obtained.
Case 3: If α1 = 0 and χ1 = 0 (i.e., β1 → ξ1) in Eq. (6.5), it acts as the flow
past a permeable spheroid and the drag expression reduces to

(6.13) FD = −4πµUc

[
3ξ1(2ξ1λ+ ξ2

1 + 4)

(6ξ1
2 + 18)λ+ 2ξ1

3 + 9ξ1

+
ε∆5

∆6

]
.

Case 4: Considering no slip i.e., λ = 0 in Eq. (6.13), it leads to the flow past
a semipermeable spheroid. Now the drag is expressed as

(6.14) FD = 6πµUc

[
2((ξ1

2 + 12)(2ξ1
2 + 5)ε− 5(ξ1

2 + 4)(2ξ1
2 + 9))

5(2ξ1
2 + 9)

2

]
.

Case 5: If the non-sphericity parameter reduces to ε = 0 in Eq. (6.13), the flow
past a permeable sphere is achieved and the drag is

(6.15) FD = −6πµUc

[
4ξ2

1λ+ ξ1(2ξ1
2 + 8)

(6ξ1
2 + 18)λ+ ξ1(2ξ1

2 + 9)

]
.

Case 6: Eq. (6.15) along with λ = 0 reduces to the flow past a semipermeable
sphere. The drag is expressed as

(6.16) FD = −6πµUc

[
2ξ1

2 + 8

2ξ1
2 + 9

]
.

Case 3 to 6 are in acknowledgement to the result of Prasad and Bucha [43].
Case 7: If ξ1 → ∞ (permeability k = 0) in Eq. (6.14), it acts as a flow past
a solid spheroid. The obtained drag is

(6.17) FD = −6πµUc

[
1− ε

5

]
,

which is in support to the renowned Stokes for viscous flow past a solid sphe-
roid [72].
Case 8: If ξ1 → ∞ (permeability k = 0) in Eq. (6.16), it behaves as flow past
a solid sphere and the drag is

(6.18) FD = −6πµUc,

which is the famous Stokes drag expression for viscous flow through a rigid
sphere [72].
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7. Numerical representation and discussion

The profiles of the drag coefficient are presented in Figs. 2–13. The drag
coefficient DN is mathematically denoted as

DN =
FD

−6πµUc
.

As the work under consideration involves several non-dimensional parameters
which are importantly used for the numerical calculation, therefore we mention
them specifically as:

1. Hartmann number for fluid region (α1).
2. Hartmann number for permeable region (χ1).
3. Slip parameter (λ).
4. Non-sphericity parameter (ε).
5. Non-dimensional permeability parameter (k1).
6. Separation parameter (η1).

In all the computation the Hartmann number for a fluid region is chosen to
be α1 ≥ 0 [59], the Hartmann number for permeable region χ1 ≥ 0 [59], slip
parameter 0.25 ≤ λ ≤ 10 [6, 38, 43, 73], non-sphericity parameter 0 < ε ≤ 1 for
an oblate spheroid and ε < 0 for a prolate spheroid [25, 29, 43], non-dimensional
permeability parameter k1 ≥ 0, separation parameter 0 < η1 < 1 as η1 = b/c
which is the ratio of the radius of an inner core to the radius of outer spheroid
which cannot exceed one.

The variation of DN against the permeability parameter addressing the im-
pact of numerous important parameters is mentioned in Figs. 2 to 6. The plots
corresponding to the variation of the coefficient of drag with the different Hart-
mann number α1 of the fluid region are figured out in Fig. 2, for both the case
of a prolate (ε = −0.3) as well as an oblate (ε = 0.3) permeable spheroid with
an impermeable core, by fixing slip value as λ = 3 and the Hartmann number
(χ1 = 5) and η1 = 0.6. Besides, Fig. 3 demonstrates the alteration of the coeffi-
cient of drag for advancing the Hartmann number α1 for both prolate and oblate
semipermeable spheroid with an impermeable core. It follows that for enhancing
value of the Hartmann number α1, the coefficient of drag also advances. The
reason behind the same is the applied magnetic field that generates a retarding
force, i.e., the Lorentz force, and as this force increases, it suppresses the rate of
flow which decreases the velocity, and thus an increase in the drag is observed.
Additionally, it is worth noticing that DN for the flow past permeable spheroidal
particle with the core is lower as compared to the semipermeable spheroid with
a core, which indicates the comparative ease of flow in the permeable spheroidal
case.
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a) ε = −0.3 b) ε = 0.3

Fig. 2. Coefficient of drag plotted against permeability parameter k1 for increasing
Hartmann number α1 with fixed parameters χ1 = 5, λ = 3, η1 = 0.6.

a) ε = −0.3 b) ε = 0.3

Fig. 3. Coefficient of drag plotted against permeability parameter k1 for increasing
Hartmann number α1 with fixed parameters χ1 = 5, λ = 0, η1 = 0.6.

a) ε = −0.3 b) ε = 0.3

Fig. 4. Coefficient of drag plotted against permeability parameter k1 for increasing
Hartmann number χ1 with fixed parameters α = 2, λ = 3, η1 = 0.6.
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a) ε = −0.3 b) ε = 0.3

Fig. 5. Coefficient of drag plotted against permeability parameter k1 for increasing
Hartmann number χ1 with fixed parameters α1 = 2, λ = 0, η1 = 0.6.

All the curves in Figs. 4 and 5 portray the nature of the drag coefficient for the
varying Hartmann number χ1 of the permeable region corresponding to the per-
meable and semipermeable spheroid with a solid core, respectively. The increase
of the Hartmann number χ1 implies the intensification of the magnetic effect in
the porous region which leads to higher values of the drag force. Furthermore,
the curves for both oblate and prolate spheroids point out the greater resistance
on a prolate spheroid as compared to an oblate spheroid. Again, as expected,
the figures discussed show a decrease in resistance as the permeability increases.

The drag coefficient for the variation in the value of the non-sphericity param-
eter is shown in Fig. 6 which illustrates that the drag decreases monotonically
with enhancing a non-sphericity parameter. The graph for ε = 0 indicates the
case for the flow past a spherical particle with a core and it is observed that the
resistance on the spherical particles is greater than that of the oblate spheroid
but less than the resistance exerted by the prolate spheroid.

a) λ = 3 b) λ = 0

Fig. 6. Coefficient of drag plotted against permeability parameter k1 for increasing
non-sphericity parameter ε with fixed parameters α1 = 3, χ1 = 5, η1 = 0.6.
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Figure 7 depicts the variation of drag with the varying separation param-
eter η1 for the case of prolate spheroid (ε = −0.3) with λ = 1 and λ = 0,
respectively and η1 represents the measure of closeness between the porous par-
ticle and the core, and it varies from 0 to 1. As η1 approaches 1, i.e., the distance
between the core and the porous region’s boundary decreases and the porous
particle with a core behaves as a solid particle. For η1 tending to 0, the porous
particle with a rigid core behaves as a porous particle without the core. The
drag for the prolate spheroid is observed to be decreasing with increasing η1

(i.e., reducing the porous region’s thickness).
Figure 8 portrays the variation of drag against the varying separation pa-

rameter η1 for ε = 0.3 oblate spheroid with λ = 1 and λ = 0, respectively. It
has been noticed that when the value of η1 rises, so does the drag on the oblate
spheroid with an impermeable core.

Observation of the drag coefficient for enhancing α1 is pictured in Fig. 9
for altering values of slip. For the entire range of slip, the drag is noted to be
an increasing function of the magnetic parameter α1. In a similar way, Fig. 10
analyzes the plots of DN for different values of χ1. The result shows the increase
in the resisting force acting on both the prolate and oblate spheroid for a higher
magnetic effect in the permeable region. For a particular value of χ1, the drag is
found to be decreasing with an increase in slip. It is important to note that all
the curves representing the cases without magnetic effects are in support of the
results obtained in [43].

Figure 11 shows the drag coefficient profile for various values of ε with varying
slip (λ) for (a) the presence of magnetic forces (α1 = 2, χ1 = 5) and (b) without
the magnetic forces (α1 = 0,χ1 = 0). Both the graphs clearly show that the
occurrence of the transverse magnetic field opposes the transport process which
in turn produces more resistance to flow than the flow without the MHD effect,
and therefore enhances the drag acting to a higher extent. Also, from the dis-
cussed figures one can observe that the rate of flow is increased for increasing
non-sphericity parameters.

Figures 12 and 13 show the effect of η1, λ, ε on the drag coefficient both in
presence and absence of magnetic influence. It is clear from the figure that for
ε = 0.3, the drag increases as η1 increases but for ε = −0.3, the drag reduces
as η1 increases. From both the figures it is clear that the parameters η1, λ, ε
show similar change in behavior but applying magnetic forces, the effect of all
the parameters are enhanced. Therefore, resistance to the flow past a permeable
spheroid with the MHD effect is larger than the flow without magnetic effect, and
similar results are found for the case of the semipermeable spheroid. Moreover,
all the obtained results emphasize the importance of introducing magnetic forces
during the study of mentioned flows.
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a) λ = 1 b) λ = 0

Fig. 7. Coefficient of drag plotted against permeability parameter k1 for increasing
separation parameter η1 with fixed parameters α1 = 1, χ1 = 1, ε = −0.3.

a) λ = 1 b) λ = 0

Fig. 8. Coefficient of drag plotted against permeability parameter k1 for increasing
separation parameter η1 with fixed parameters α1 = 2, χ1 = 5, ε = 0.3.

a) ε = −0.3 b) ε = 0.3

Fig. 9. Coefficient of drag plotted against slip parameter λ for increasing Hartmann
number α1 with fixed parameters χ1 = 5, k1 = 0.05, η1 = 0.6.
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a) ε = −0.3 b) ε = 0.3

Fig. 10. Coefficient of drag plotted against slip parameter λ for increasing Hartmann
number χ1 with fixed parameters α1 = 2, k1 = 0.05, η1 = 0.6.

a) α1 = 2, χ1 = 5 b) α1 = 0, χ1 = 0

Fig. 11. Coefficient of drag plotted against slip parameter λ for increasing non-sphericity
parameter ε with fixed parameters k1 = 0.05, η1 = 0.3.

a) ε = −0.3 b) ε = 0.3

Fig. 12. Coefficient of drag plotted against slip parameter λ for increasing separation
parameter η1 with fixed parameters α1 = 1, χ1 = 1, k1 = 0.05.
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a) ε = −0.3 b) ε = 0.3

Fig. 13. Coefficient of drag plotted against slip parameter λ for increasing separation
parameter η1 with fixed parameters α1 = 0, χ1 = 0, k1 = 0.05.

8. Conclusions

The current study shows light on the viscous incompressible fluid’s motion,
passing through a spheroidal particle of a permeable structure with an imper-
meable core when magnetic forces are present. An analytical solution to the
problem, governed by Stokes and Darcy’s law, has been examined. Beavers–
Joseph–Saffman–Jones boundary condition accompanying the continuity of nor-
mal velocities and the balance of the pressure and normal stresses is supposed
to be applicable at the fluid porous interface along with vanishing of the nor-
mal component of velocity at the surface of the impermeable core. The study
also surveys the influence of relevant parameters on the flow dynamics, using
a numerical approach.

The conclusions drawn from the present analysis are as follow:
• An expression for drag that a permeable spheroid with the solid core ex-

periences is computed by adopting the analytical technique and impor-
tant results are deduced, which are consistent with the earlier observations
available in the literature.
• It is worth noticing the drag coefficient to be a rising function of the Hart-

mann numbers (α1, χ1) and a reducing function of permeability k1, the
non-sphericity parameter ε, slip parameter λ.

• The drag is discovered to be an increasing and a decreasing function of
a separation parameter for the oblate and prolate spheroid with a core,
respectively.
• Interestingly, the transverse magnetic field has an effect to retard the flow

velocity, which leads to the increment of the drag forces.
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• Based on the above analysis, it is effectively concluded that drag acting on
permeable and semipermeable spheroids with an impermeable core under
the MHD effect is higher as compared to the case without magnetic forces.
• As a result, supplying a magnetic field to the flow past permeable spheroid

with the deformed core is found to have a considerable impact on the char-
acteristic of fluid flow, and thus the proposed scheme is of much importance
while dealing with MHD flow past deformed spherical particles.

Appendix A

In this appendix one can find the algebraic equations required for determining
the coefficients given in Eqs. (4.1) and (4.2) and their solutions as well.

We get the following equations by applying the Eqs. (3.9) to (3.12) up to first
order of αm

[1+a2+b2K3/2(α)−c2−d2]P1(ζ)(A.1)

+αm[2−a2−(K3/2(α)+αK1/2(α))b2−2c2+d2]Q(ζ)

+
∞∑
n=3

[An+Kn−1/2(α)Bn−Cn−Dn]Pn−1(ζ) = 0,[
(6λ+ξ1)a2+(λ((α2+6)K3/2(α)+2αK1/2(α))(A.2)

+ξ1(K3/2(α)+αK1/2(α)))b2−2ξ1

]
ϑ2(ζ)

+αmϑ2(ζ)[−((18λ+2ξ1)a2+(λ(α2+6)(3K3/2(α)+αK1/2(α))

+ξ1((α2+2)K3/2(α)))b2+2ξ1)ϑm(ζ)+((18λ+2ξ1)a2

+2(3λ(3K3/2(α)+αK1/2(α))+ξ1K3/2(α))b2

+2ξ1)P1(ζ)Pm−1(ζ)]−
∞∑
n=3

[(2(1−n2)λ+ξ1(1−n))An

+(λ((2(n2−1)+α2)Kn−1/2(α)+2αKn−3/2)

+ξ1((n−1)Kn−1/2(α)+αKn−3/2(α)))Bn]ϑn(ζ) = 0,

[(6+α2/2)a2+2(3K3/2(α)+αK1/2(α))b2+β2c2(A.3)

−(β2/2)d2−α2]P1(ζ)−αm[(12+α2)a2+2(6K3/2(α)+2αK1/2(α))b2

−β2c2−β2d2+α2]ϑm(ζ)P1(ζ)−αm[12a2+2((α2+6)K3/2+2αK1/2)b2]Q(ζ)

+

∞∑
n=3

[(2(n+1)+α2/n)An+(2((1+n)Kn−1/2+αKn−3/2))Bn

+(β2/(n−1))Cn−(β2/n)Dn]Pn−1(ζ) = 0,
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(η2c2+η−1d2)P1(ζ)+αm[2η2c2−η−1d2]Q(ζ)(A.4)

+
∞∑
n=3

[Cnη
n+Dnη

1−n]Pn−1(ζ) = 0,

where
Q(ζ) = ϑm(ζ)P1(ζ) + ϑ2(ζ)Pm−1(ζ).

By equating the leading terms of Eqs. (A.1) to (A.4) to zero, we obtain

1 + a2 + b2K3/2(α)− c2 − d2 = 0,(A.5)

(6λ+ ξ1)a2 + (λ((α2 + 6)K3/2(α) + 2αK1/2(α))(A.6)

+ ξ1(K3/2(α) + αK1/2(α)))b2 − 2ξ1 = 0,

(6 + α2/2)a2 + 2(3K3/2(α) + αK1/2(α))b2(A.7)

+ β2c2 − (β2/2)d2 − α2 = 0,

η2c2 + η−1d2 = 0.(A.8)

Solving these equations the values of a2, b2, c2, and d2 are obtained.
Now, Eqs. (A.1) to (A.4) reduces to

∞∑
n=3

[An +Kn−1/2(α)Bn − Cn −Dn]Pn−1(ζ) + αmΩ1Q(ζ) = 0,(A.9)

−
∞∑
n=3

[(2(1− n2)λ+ ξ1(1− n))An + (λ((2(n2 − 1) + α2)Kn−1/2(α)(A.10)

+ 2αKn−3/2) + ξ1((n− 1)Kn−1/2(α) + αKn−3/2(α)))Bn]ϑn(ζ)

+ αmϑ2(ζ)[Ω2ϑm(ζ) + Ω3P1(ζ)Pm−1(ζ)] = 0,
∞∑
n=3

[(2(n+ 1) + α2/n)An + (2((1 + n)Kn−1/2 + αKn−3/2))Bn(A.11)

+ β2/(n− 1)Cn − (β2/n)Dn]Pn−1(ζ)

+ αmΩ4ϑm(ζ)P1(ζ)− αmΩ5Q(ζ) = 0,
∞∑
n=3

[Cnη
n +Dnη

1−n]Pn−1(ζ) + αmΩ6Q(ζ) = 0.(A.12)

Again for finding the values An,Bn, Cn, and Dn, the identities (A.13)-(A.16)
mentioned in Prasad and Bucha [66] are used in Eqs. (A.9) to (A.12), it is ob-
served that the values ofAn,Bn, Cn, andDn vanishes when n 6= m− 2,m,m+ 2.
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The expressions for n = m− 2,m,m+ 2 are as follows

An +BnKn−1/2 − Cn −Dn + Ω1an = 0,(A.13)

(2(n2 − 1)λ+ ξ1(n− 1))An + (λ[(2(n2 − 1) + α2)Kn−1/2(α)(A.14)

+ 2αKn−3/2(α)] + ξ1[(n− 1)Kn−1/2(α) + αKn−3/2(α)])Bn

+ Ω2an + Ω3bn = 0,

(2(n+ 1) + α2/n)An + 2((1 + n)Kn−1/2(α) + αKn−3/2(α))Bn(A.15)

+ (β2/(n− 1))Cn − (β2/n)Dn + Ω4cn − Ω5an = 0,

ηnCn + η1−nDn + Ω6an = 0,(A.16)

where

Ω1 = 2− a2 − (K3/2(α) + αK1/2(α))b2 − 2c2 + d2,

Ω2 = −2(9λ+ ξ1)a2 − [λ(α2 + 6){3K3/2(α) + αK1/2(α)}
+ ξ1(α2 + 2)K3/2(α)]b2 − 2ξ1,

Ω3 = (18λ+ 2ξ1)a2 + {6λ(3K3/2(α) + αK1/2(α)) + 2ξ1K3/2(α)}b2 + 2ξ1,

Ω4 = −(12 + α2)a2 − 4(3K3/2(α) + αK1/2(α))b2 + β2c2 + β2d2 − α2,

Ω5 = 12a2 + 2{(6 + α2)K3/2(α) + 2αK1/2(α)}b2,
Ω6 = 2η2c2 − η−1d2,

and

(A.17)

an =
n(n− 1)αn

(2n+ 1)(2n− 3)
,

bn =
n(n− 1)αn

2(2n+ 1)(2n− 3)
,

cn =
αn

(2n+ 1)(2n− 3)
.

Using all the above equations for simplifying (A.13) to (A.16), we obtain the
individual expressions of An, Bn, Cn, and Dn for n = m− 2,m,m+ 2.

Appendix B

The values of ωi2 , i2 = 1, . . . , 17, ∆j2 , j2 = 1, . . . , 13 and Γ are defined as:

ω1 = α2
1 + α1 + 9,

ω2 = α2
1 + 3α1 + 3,

ω3 = α2
1 + 2α1 + 1,
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ω4 = 4β2
1(ω1 + β2

1) + α1(α3
1 + 2α2

1 + 19α1 + 18) + 81,

ω5 = 2α3
1 + 7α2

1 + 30α1 + 45,

ω6 = α3
1 + 3α2

1 + 18α1 + 18,

ω7 = α2
1 + 6α1 + 9,

ω8 = α1(9α3
1 + 38α2

1 + 123α1 + 174) + 87,

ω9 = α1(3α3
1 + 14α2

1 + 57α1 + 90) + 45,

ω10 = α1(9α4
1 + 46α3

1 + 234α2
1 + 561α1 + 684) + 342,

ω11 = α1(α4
1 + 10α3

1 + 64α2
1 + 174α1 + 216) + 108,

ω12 = (α1 − 1)α1(α1 + 6)− 6,

ω13 = α1(3α5
1 + 18α4

1 + 107α3
1 + 264α2

1 + 372α1 + 360) + 180,

ω14 = 10ω1ω6 + 20β2
1ω5 + 40(α1 + 3)β4

1 ,

ω15 = 5(4β4
1ω7 + ω6(ω6 + 4α1β

2
1 + 12β2

1)),

ω16 = 8(6(α1 + 1)β4
1ω2 + 6ω11 + β2

1ω10),

ω17 = 12β2
1ω13 + 24(α1 + 1)β4

1ω12,

∆1 = λ2ω17 + λξ1ω16 + Γξ1
2,

∆2 = 5ξ2
1ω4 + λ2ω15 + λξ1ω14,

∆3 = (α3
1 + 3α2

1 + 6α1 + 6),

∆4 = (ω6 + (2α1 + 6)β2
1),

∆5 = 3ξ1(12λ(ξ4
1 − λξ3

1 + 19ξ2
1 + 15λξ1 + 36) + ξ1(ξ2

1 + 12)(2ξ2
1 + 5)),

∆6 = 5(2ξ3
1 + 6ξ2

1λ+ 9ξ1 + 18λ)2,

∆7 = η3
1ξ

2
1 + 2ξ2

1 − 9η3
1 + 9,

∆8 = η3
1ξ

2
1 + 2ξ2

1 − 6η3
1 + 6,

∆9 = 4(ξ4
1 + 19ξ2

1 + 36) + 4η3
1(ξ4

1 − 35ξ2
1 − 72)

+ η6
1(ξ2

1 − 18)(ξ2
1 − 8),

∆10 = 4η3
1ξ

2
1(ξ2

1 + 84) + η6
1ξ

2
1(ξ2

1 − 6) + 4ξ2
1(ξ2

1 − 15),

∆11 = 4η3
1(ξ4

1 − 20ξ2
1 − 60) + 2(ξ2

1 + 12)(2ξ2
1 + 5)

+ η6
1(ξ2

1 − 15)(ξ2
1 − 8),

∆12 = 2(ξ2
1 + 4) + η3

1(ξ2
1 − 8),

∆13 = 2ξ2
1 + η3

1(ξ2
1 − 9) + 9,

Γ = 4(4ω9 + β2
1(ω8 + 6β2

1ω3)).
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Appendix C

The stream functions for both the flows in fluid region and within permeable
spheroid are given by

ψ(1) =

[
r2 +

a2

r
+ b2
√
rK3/2(αr)

]
ϑ2(ζ)(C.1)

+ [Am−2r
−m+3 +Bm−2

√
rKm−5/2(αr)]ϑm−2(ζ)

+ [Amr
−m+1 +Bm

√
rKm−1/2(αr)]ϑm(ζ)

+ [Am+2r
−m−1 +Bm+2

√
rKm+3/2(αr)]ϑm+2(ζ),

ψ(2) =

[
c2r

2 +
d2

r

]
ϑ2(ζ) +

[
Cm−2r

m−2 +Dm−2r
−m+3

]
ϑm−2(ζ)(C.2)

+ [Cmr
m +Dmr

−m+1]ϑm(ζ) + [Cm+2r
m+2 +Dm+2r

−m−1]ϑm+2(ζ),

and the pressure terms for the flows are given by

p(1) = α2

[(
r− a2

2r2

)
P1(ζ)−Am−2r

−m+2

m−2
Pm−3(ζ)−Amr

−m

m
Pm−1(ζ)(C.3)

−Am+2r
−m−2

m+2
Pm+1(ζ)

]
,

p(2) = β2

[(
c2r−

d2

2r2

)
P1(ζ)+

(
Cm−2

rm−3

m−3
−Am−2r

−m+2

m−2

)
Pm−3(ζ)(C.4)

+

(
Cm

rm−1

m−1
−Amr

−m

m

)
Pm−1(ζ)+

(
Cm+2

rm+1

m+1
−Am+2r

−m−2

m+2

)
Pm+1(ζ)

]
,

where the constants have all been determined in Appendix A.
Also, the values of νi1 , i1 = 1, . . . , 29, and δj1 , j1 = 1, . . . , 8 used in the

expression of drag are defined as follows:

ν1 = 2(β2
1 − 8)ω2,

ν2 = 4(β2
1 + 4)ω2,

ν3 = (β2
1 − α2

1 − α1 − 9)
2
,

ν4 =
√
ν3(2β2

1 + α2
1 + α1 + 9),

ν5 =
√
ν3η

3
1 + 2β2

1 + α2
1 + α1 + 9,

ν6 = (α1 + 3)β2
1 − ω6,

ν7 = ω6 + 2(α1 + 3)β2
1 ,

ν8 = β2
1ω5 + 2α5

1 + 8α4
1 + 60α3

1 + 126α2
1 + 360α1 + 324,

ν9 = 3α4
1 + 14α3

1 + 3(27α2
1 + 46α1 + 23),
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ν10 = 3α4
1 + 14α3

1 + 3(19α2
1 + 30α1 + 15),

ν11 = 24(α1 + 1)2,

ν12 = 30α4
1 + 121α3

1 + 120(2α2
1 + 2α1 + 1),

ν13 = 3β4
1ω3 − β2

1ν9 + 8ν10,

ν14 = −4β2
1ν12 + β4

1ν11 − 32ν10,

ν15 = (α1 + 1)ω2,

ν16 = 3α5
1 + 16α4

1 + 114α3
1 + 345α2

1 + 468α1 + 234,

ν17 = 60α5
1 + 301α4

1 + 1254α3
1,

ν18 = 2397α2
1 + 2520α1 + 1260,

ν19 = (α1 + 1)ω12,

ν20 = α6
1 + 6α5

1 + 41α4
1 + 72α3

1 + 12α2
1 − 72α1 − 36,

ν21 = 5α6
1 + 30α5

1 + 167α4
1 + 474α3

1 + 858α2
1 + 1008α1 + 504,

ν22 = 48ω11 − 4β2
1ν16 + 12β4

1ν15,

ν23 = −96ω11 − 4β2
1(ν18 + ν17) + 48β4

1ν15,

ν24 = β4
1ν19 − β2

1ν20,

ν25 = 24(β4
1ν19 − β2

1ν21),

ν26 = 5ω2
1 + 20β2

1ω1 + 10η3
1ν4 + 5η6

1ν3 + 20β4
1 ,

ν27 = 10(ω1ω6 − β2
1ω5 + (α1 + 3)β4

1),

ν28 = 5ω2
6 − 10(α1 + 3)β2

1ω6 + 5(α1 + 3)2β4
1 ,

ν29 = 10(2β4
1ω7 − ω2

6 − (α1 + 3)β2
1ω6),

δ1 = ν2 + η3
1ν1,

δ2 = 2∆3(β2
1η

3
1 + 2β2

1),

δ3 = 4β2
1ω8 + η3

1ν14 + 2η6
1ν13 + β4

1ν11 + 16ν10,

δ4 = 48ω11 + 8β2
1ω10 + η3

1ν23 + η6
1ν22 + 48β4

1ν15,

δ5 = 12β2
1ω13 + η3

1ν25 + 6η6
1ν24 + 24β4

1ν19,

δ6 = ω14 + η3
1(40(α1 + 3)β4

1 − 10ν8) + η6
1ν27,

δ7 = ω15 + η3
1ν29 + η6

1ν28,

δ8 = ν26χ
2
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