PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fibonacci-like sequence associated with k-Pell, k-Pell-Lucas and Modified k-Pell sequences

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibonacci sequence is a well known example of second order linear recurrence relatio. Besides Fibonacci numbers and their generalizations have many applications as well as interesting properties almost in every field of science such as in Physics, Biology, Mathematics (Algebra, Geometry and Number Theory itself). The main aim of the present article to introduce a generalization of Fibonacci sequence which is similar to k-Pell, k-Pell-Lucas, Modified k-Pell sequences and known as Fibonacci-Like sequence. After that we obtain some fundamental properties of Fibonacci-Like sequence such as Binet formulae of Fibonacci-Like sequence, binomial transform of the Fibonacci-Like sequence and sum of Fibonacci-Like numbers with indexes in an arithmetic sequence. In addition to this we obtain some new relations among k-Pell, k-Pell-Lucas, Modified k-Pell and Fibonacci-Like sequences.
Rocznik
Strony
159--171
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • School of Studies in Mathematics, Vikram University Ujjain, Ujjain, India
autor
  • Department of Mathematics, Aligarh Muslim University, India
  • Department of Statistics, Horticulture College Mandsaur, Mandsaur India
Bibliografia
  • [1] Horadam A.F., Applications of modified Pell numbers to representations, Ulam Quarterly 1994, 3(1), 34-53.
  • [2] Horadam A.F., Pell identities, Fibonacci Quarterly 1971, 9(3), 245-252.
  • [3] Halici S., Daşdemir A., On some relationships among Pell, Pell-Lucas and modified Pell sequences, Fen Bilimleri Dergisi 2010, 1(1), 141-145.
  • [4] Halici S., Some sums formulae for products of terms of Pell, Pell-Lucas and modified Pell sequences, Fen Bilimleri Dergisi 2011, 151-155.
  • [5] Catarino P., Vasco P., Modified k-Pell sequence: Some identities and ordinary generating function, Applied Mathematica Sciences 2013, 7(121), 6031-6037.
  • [6] Catarino P., Vasco P., On some identities and generating functions for k-Pell-Lucas sequence, Applied Mathematical Sciences 2013, 7(98), 4867-4873.
  • [7] Catarino P., On some identities and generating functions for k-Pell numbers, International Journal of Mathematical Analysis 2013, 7(38), 1877-1884.
  • [8] Singh B., Bhatnagar S., Sikhwal O., Generalized identities of companion Fibonacci-Like sequences, Global Journal of Mathematical Analysis 2013, 1(3), 104-109.
  • [9] Gupta V.K., Panwar Y.K., Sikhwal O., Generalized Fibonacci sequences, Theoretical Mathematics and Applications 2012, 2(2), 115-124.
  • [10] Jhala D., Sisodiya K., Rathore G.P.S., On some identities for k-Jacobsthal numbers, Int. Journal of Math. Analysis 2013, 7(12), 551-556.
  • [11] Campos H., Catarino P., Aires A.P., Vasco P., Borges A., On some identities of k-Jacobsthal-Lucas numbers, Int. Journal of Math. Analysis 2014, 8(10), 489-494.
  • [12] Jhala D., Rathore G.P.S., Sisodiya K., Some properties of k-Jacobsthal numbers with arithmetic indexes, Turkish Journal of Analysis and Number Theory 2014, 2(4), 119-124.
  • [13] Singh B., Bhadouria P., Sikhwal O., Sum properties for the k-Lucas numbers with arithmetic indexes, Journal of Mathematical and Computational Science 2014, 4(1), 105-117.
  • [14] Bhadouria P., Jhala D., Singh B., Binomial transforms of the k-Lucas sequences and its properties, Journal of Mathematics and Computer Science 2014, 8, 81-92.
  • [15] Falcon S., Plaza A., Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Sciences and Numerical Simulation 2009, 10, 1527-1538.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-511cd3b7-b1b6-4358-acca-3c30cdd10b6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.