Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a mathematical model for the flow of micropolar fluid in a horizontal channel filled with an anisotropic porous medium, bounded by two parallel plates—where the upper plate is stationary, and the lower plate moves at a constant velocity. The flow, driven by both a constant pressure gradient and the movement of the lower plate, is governed by the Darcy-Brinkman equation. Using no-slip and no-spin boundary conditions, we analytically derive expressions for the velocity, microrotational velocity, and stress distributions. The study provides a graphical analysis of the flow behavior influenced by key parameters such as the Darcy number, porous medium anisotropy, anisotropy angle, and the micropolar fluid’s material parameters. Furthermore, the effects of the material parameters and Darcy number on shear stress and couple stress are thoroughly investigated. The findings have applications in modeling fluid flow in striated or fractured rock formations.
Wydawca
Czasopismo
Rocznik
Tom
Strony
581--596
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- Department of Mathematics & Astronomy, University of Lucknow, Lucknow - 226007, India
autor
- Department of Mathematics & Astronomy, University of Lucknow, Lucknow - 226007, India
Bibliografia
- [1] A.D. Nield and A. Bejan. Convection in porous media. Springer, New York, 2006.
- [2] A.J. Chamkha. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction. International Communications in Heat and Mass Transfer, 30(3):413–422, 2003. doi: 10.1016/S0735-1933(03)00059-9.
- [3] M. Rahman, H. Waheed, M. Turkyilmazoglu, and M.S. Siddiqui. Darcy–Brinkman porous medium for dusty fluid flow with steady boundary layer flow in the presence of slip effect. International Journal of Modern Physics B, 38(11):2450152, 2024. doi: 10.1142/S0217979224501522.
- [4] I.-C. Liu, H.-H. Wang, and J.C. Umavathi. Poiseuille-Couette flow and heat transfer in an inclined channel for composite porous medium. Journal of Mechanics, 28(1):171–178, 2012. doi: 10.1017/jmech.2012.18.
- [5] S. Hooshyar, H.N. Yoshikawa, and P. Mirbod. The impact of imposed Couette flow on the stability of pressure-driven flows over porous surfaces. Journal of Engineering Mathematics, 132:15, 2022. doi: 10.1007/s10665-021-10195-3.
- [6] V. Rajesh, M. Srilatha, and A.J. Chamkha. Numerical study of hybrid nanofluid flow and heat transfer on a stretching sheet with MHD and heat generation effects. Heat Transfer, 51(4):2867–2884, 2022. doi: 10.1002/htj.22427.
- [7] J.C. Umavathi, J.P. Kumar, A.J. Chamkha, and I. Pop. Mixed convection in a vertical porous channel. Transport in Porous Media, 61(2):315–335, 2005. doi: 10.1007/s11242-005-0260-5.
- [8] M.V. Krishna, M.G. Reddy, and A.J. Chamkha. Heat and mass transfer on MHD free convective flow over an infinite nonconducting vertical flat porous plate. International Journal of Fluid Mechanics Research, 46(1):1–25, 2019. doi: 10.1615/InterJFluidMechRes.2018025004.
- [9] R.S.R. Gorla, A.J. Chamkha, and A.M. Rashad. Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural convection dominated regime. Nanoscale Research Letters, 6:207, 2011. doi: 10.1186/1556-276X-6-207.
- [10] A.S. Dogonchi, M. Waqas, S.R. Afshar, S.M. Seyyedi, M. Hashemi-Tilehnoee, A.J. Chamkha, and D.D. Ganji. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering joule heating, thermal radiation, and adding different nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow, 30(2):659–680, 2020. doi:10.1108/HFF-05-2019-0390.
- [11] A.C. Eringen. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16(1):1–18, 1966.
- [12] G. Łukaszewicz. Micropolar Fluids: Theory and Applications. Springer Science & Business Media, Berlin, 2012.
- [13] I. Papautsky, J. Brazzle, T. Ameel, and A.B. Frazier. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical, 73(1-2):101–108, 1999. doi:10.1016/S0924-4247(98)00261-1.
- [14] S. Ahmad, K. Ali, T. Sajid, U. Bashir, F.L. Rashid, R. Kumar, M.R. Ali, A.S. Hendy, and A. Darvesh. A novel vortex dynamics for micropolar fluid flow in a lid-driven cavity with magnetic field localization–a computational approach. Ain Shams Engineering Journal, 15(2):102448, 2024. doi: 10.1016/j.asej.2023.102448.
- [15] B. Jalili, A.A. Azar, K. Esmaeili, D. Liu, P. Jalili, and D.D. Ganji. A novel approach to micropolar fluid flow between a non-porous disk and a porous disk with slip. Chinese Journal of Physics, 87:118–137, 2024. doi: 10.1016/j.cjph.2023.11.023.
- [16] R.N. Jat, V. Saxena, and D. Rajotia. MHD stagnation point flow and heat transfer of a micropolar fluid in a porous medium. Journal of International Academy Physical Sciences, 16:315–328, 2012.
- [17] T. Salahuddin, M. Khan, F.S. Al-Mubaddel, M.M. Alam, and I. Ahmad. A study of heat and mass transfer micropolar fluid flow near the stagnation regions of an object. Case Studies in Thermal Engineering, 26:101064, 2021. doi: 10.1016/j.csite.2021.101064.
- [18] R. Nazar, N. Amin, D. Filip, and I. Pop. Stagnation point flow of a micropolar fluid towards astretching sheet. International Journal of Non-Linear Mechanics, 39(7):1227–1235, 2004. doi: 10.1016/j.ijnonlinmec.2003.08.007.
- [19] N.A. Kelson and A. Desseaux. Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. International Journal of Engineering Science, 39(16):1881–1897, 2001. doi: 10.1016/S0020-7225(01)00026-X.
- [20] M.M. Rahman, A. Aziz, and M.A. Al-Lawatia. Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. International Journal of Thermal Sciences, 49(6):75–85, 2010. doi: 10.1016/j.ijthermalsci.2010.01.002.
- [21] M.S. Faltas, H.H. Sherief, and M.A. Ibrahim. Darcy–Brinkman micropolar fluid flow through corrugated micro-tube with stationary random model. Colloid Journal, 82:604–616, 2020. doi: 10.1134/S1061933X20050075.
- [22] A.J. Chamkha and A. Al-Mudhaf. Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink. Heat and Mass Transfer, 44(6):679–693, 2008. doi: 10.1007/s00231-007-0299-7.
- [23] B.I. Olajuwon, J.I. Oahimire, and M. Ferdow. Effect of thermal radiation and Hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium. Engineering Science and Technology, an International Journal, 17(4):185–193, 2014. doi: 10.1016/j.jestch.2014.05.004.
- [24] R. Nazar, N. Amin, and I. Pop. Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature. International Journal of Numerical Methods for Heat & Fluid Flow, 13(1):86–109, 2003. doi: 10.1108/09615530310456778.
- [25] C.Y. Wang. Dracy-Brinkman flow in a rotating channel filled with an anisotropic porous medium. Journal of Porous Media, 25(1):31–40, 2022. doi: 10.1615/JPorMedia.2021038567.
- [26] V.K. Verma and A.F. Ansari. Darcy-Brinkman flow in an anisotropic rotating porous channel under the influence of magnetic field. Journal of Porous Media, 27(6):31–43, 2024. doi:10.1615/JPorMedia.2023050260.
- [27] G. Degan, S. Zohoun, and P. Vasseur. Forced convection in horizontal porous channels with hydrodynamic anisotropy. International Journal of Heat and Mass Transfer, 45(15):3181–3188, 2002. doi: 10.1016/S0017-9310(02)00032-7.
- [28] M. Mobedi, O. Cekmer, and I. Pop. Forced convection heat transfer inside an anisotropic porouschannel with oblique principal axes: Effect of viscosity dissipation. International Journal of Thermal Sciences, 49:1984–1993, 2010. doi: 10.1016/j.ijthermalsci.2010.06.002
- [29] T. Karmakar, M. Reza, and G.P. Raja Sekhar. Forced convection in a fluid saturated anisotropic porous channel with isoflux boundaries. Physics of Fluids, 31(11):117109, 2019. doi: 10.1063/1.5126892.
- [30] J. Yovogan and G. Degan. Effect of anisotropic permeability on convective heat transfer through a porous river bed underlying a fluid layer. Journal of Engineering Mathematics, 81(1):127–140, 2013. doi: 10.1007/s10665-012-9605-6.
- [31] T. Karmakar and G.P. Raja Sekhar. Effect of anisotropic permeability on fluid flow through composite porous channel. Journal of Engineering Mathematics, 100(1):33–51, 2016. doi: 10.1007/s10665-015-9831-9.
- [32] P. Kumar Yadav, S. Jaiswal, T. Asim, and R. Mishra. Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two newtonian fluid layers through a porous medium. The European Physical Journal Plus, 133:247, 2018. doi: 10.1140/epjp/i2018-12071-5.
- [33] G. Ahmadi. Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science, 14(7):639–646, 1976. doi: 10.1016/0020-7225(76)90006-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-511bfd5c-9c82-48d3-8745-9020b317ffb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.