PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extraction and separation of zinc, lead, silver, and bismuth from bismuth slag

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the extraction and separation of zinc, lead, silver, and bismuth from a refractory bismuth refining slag via a hydrometallurgical route. The process consists of a preliminary leaching of zinc with water, followed by the selective leaching of lead and silver with a calcium chloride solution, leading to the crystallization of lead chloride and the cementation of silver. The diagrams of the total concentrations of [Pb]/[Ag] versus [Cl-] and temperature in the Pb/Ag-Cl-H2O system were drawn, respectively, to determine the optimum concentration of leaching agent and leaching temperature. The potential-pH diagram of the Pb/Ag/Bi-H2O system indicates that the preferential leaching of lead and silver could be achieved. Finally, 98.8% of lead and 90.4% of silver were selectively removed by further leaching the water leaching residue with 400 g/dm3 of CaCl2 solution at pH 4.5 and 80 °C, while only 3.7% of bismuth was leached in this stage. Fifty-nine percent of lead in the leach liquor was separated out as PbCl2 by natural cooling. Ninety-five percent of silver in mother liquor was recovered by cementation with a lead sheet. The depleted CaCl2 solution can be sent to the leaching step again to close the loop.
Słowa kluczowe
EN
Rocznik
Strony
173--183
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • School of Metallurgical and Ecological Engineering, Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Metallurgical and Ecological Engineering, Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
  • School of Metallurgical and Ecological Engineering, Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
  • School of Metallurgical and Ecological Engineering, Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • ADEBAYO, A.O., OLASEHINDE, E.F., 2015. Leaching kinetics of lead from galena with acidified hydrogen peroxide and sodium chloride solution. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 124, 137–142.
  • ALMEIDA, M.F., AMARANTE, M.A., 1995. Leaching of a silver bearing sulphide by-product whit cyanide, thiourea and chloride solutions. Miner. Eng., 8, 257–271.
  • ANDERSON, C.S., 2014. Minerals Yearbook Bismuth. U.S. Geological Survey.
  • ARGEKAR, A.P., SHETTY, A.K., 1995. Extraction and spectrophotometric determination of bismuth(III) with Cyanex-301. Analyst, 120, 1819–1822.
  • CAMPOS, K., DOMINGO, R., VINCENT, T., RUIZ, M., SASTRE, A.M., GUIBAL, E., 2008. Bismuth recovery from acidic solutions using Cyphos IL-101 immobilized in a composite biopolymer matrix. Water Res., 42, 4019–4031.
  • CAO, H., CHEN, J., YUAN, H., ZHENG, G. 2010. Preparation of pure SbCl3 from lead anode slime bearing high antimony and low silver. Trans. Nonferrous Met. Soc. China, 20, 2397–2403.
  • CHMIELEWSKI, T., GIBAS, K., BOROWSKI, K., ADAMSKI, Z., WOZNIAK, B., MUSZER, A., 2017. Chloride leaching of silver and lead from a solid residue after atmospheric leaching of flotation copper concentrates. Physicochem. Probl. Miner. Process., 53(2), 893–907.
  • CHEN, Y., LIAO, T., LI, G.B., CHEN, B.Z., SHI, X.C., 2012. Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction. Miner. Eng., 39, 23–28.
  • EXPOSITO, E., INIESTA, J., GARCIA, J.G., MONTIEL, V., ALDAZ, A., 2001. Lead electrowinning in an acid chloride medium. J. Power Sources, 92, 260–266.
  • HA, T.K., KWON, B.H., PARK, K.S., MOHAPATRA, D., 2015. Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust. Sep. Purif. Technol., 142, 116–122.
  • HAN, J., LIANG, C., LIU, W., QIN, W., JIAO, F., LI, W., 2017. Pretreatment of tin anode slime using alkaline pressure oxidative leaching. Sep. Purif. Technol., 174, 389–395.
  • HINAI, A.T.A., HINAI, M.H.A., DUTTA, J., 2014. Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media. Mater. Res. Bull., 49, 645–650.
  • KIM, E., ASARE, K.O., 2012. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd-(PO4)-(SO4)-H2O at 25 °C. Hydrometallurgy, 113–114, 67–78.
  • LIU, W., YANG, T., XIA, X., 2010. Behavior of silver and lead in selective chlorination leaching process of gold-antimony alloy. Trans. Nonferrous Met. Soc. China, 20, 322–329.
  • MPINGA, C.N., BRADSHAW, S.M., AKDOGAN, G., SNYDERS, C.A., EKSTEEN, J.J., 2014. Evaluation of the Merrill-Crowe process for the simultaneous removal of platinum, palladium and gold from cyanide leach solutions. Hydrometallurgy, 142, 36–46.
  • NAGIB, S., INOUE, K., 2000. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56, 269–292.
  • NAVARRO, R., RUIZ, P., SAUCEDO, I., GUIBAL, E., 2014. Bismuth(III) recovery from hydrochloric acid solutions using Amberlite XAD-7 impregnated with a tetraalkylphosphonium ionic liquid. Sep. Purif. Technol., 135, 268–277.
  • OJEBUOHOH, F.K., 1992. Bismuth-Production, properties and Applications. The Journal of the Minerals, Metals & Materials Society, 44, 46–49.
  • PISTOFIDIS, N., VOURLIAS, G., KONIDARIS, S., PAVLIDOU, El., STERGIOU, A., STERGIOUDIS, G., 2007. The effect of bismuth on the structure of zinc hot-dip galvanized coating. Mater. Lett., 61, 994.
  • RAGHAVAN, R., MOHANAN, P.K., SWARNKAR, S.R., 2000. Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal. Hydrometallurgy, 58, 103–116.
  • SARKAR, S.G., DHADKE, P.M., 1999. Solvent extraction separation of antimony(III) and bismuth(III) with bis (2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex 302). Sep. Purif. Technol., 15, 131–138.
  • SINHA, M.K., PRAMANIK, S., SAHU, S.K., PRASAD, L.B., JHA, M.K., PANDEY, B.D., 2016. Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution. Sep. Purif. Technol., 167, 37–44.
  • SPEIGHT, T. G., 2004. Lange's Handbook of Chemistry: 70th Anniversary Edition. McGraw-Hill Professional.
  • SU, D.W., DOU, S.X., WANG, G.X., 2015. Bismuth: A new anode for the Na-ion battery. Nano Energy, 12, 88–95.
  • SYED, S., 2016. Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling. Waste Manage., 50, 234–256.
  • WARREN, C W., 1996. EPD Congress 1996. Pennsylvania: The Minerals, Metals & Materials Society.
  • XIONG, D., XIAO, J., 2005. The production practice of the recovery of bismuth from oxide slag of gold and silver smelting. Precious Metals 26, 16–20.
  • YANG, J.G., TANG, C.B., YANG, S.H., HE, J., TANG, M.T., 2009a. The separation and electrowinning of bismuth from a bismuth glance concentrate using a membrane cell. Hydrometallurgy, 100, 5–9.
  • YANG J.G., YANG J.Y., TANG M.T., TANG C.B., LIU W., 2009b. The solvent extraction separation of bismuth and molybdenum from a low grade bismuth glance flotation concentrate. Hydrometallurgy, 96, 342–348.
  • ZHANG, B., LI, Q., SHEN, W., MIN, X., 2012. Recovery of bismuth and antimony metals from pressure-leaching slag. Rare metals, 31, 102–106.
  • ZHANG, K.L., LIU, C.M., HUANG, F.Q., ZHENG, C., WANG, W.D., 2006. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B-Environ., 68, 125–129.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-511ac0e0-e106-4b27-993d-580ddb923860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.