PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The surface layer degradation of γ-TiAl phase based alloy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the present research is to describe the chemical composition and microstructure of the surface layer of Ti-46Al-7Nb-0.7Cr-0,1Si-0.2Ni alloy after the test of isothermal oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 during 250 h. Design/methodology/approach: The objectives were achieved using several techniques including conventional metallography, SEM, BSE, EDX. The oxides scales and their effects were investigated at temperatures 750ºC. Findings: This investigation confirms that the better protection of the substrate was determined using AlCrN coating. Research limitations/implications: The basic limitations concern alloys in a higher temperature and establish the oxidation kinetics of the analysed alloy as a function of time and temperature. Practical implications: One of practical outcomes is to select the coatings which guarantee the reduction of oxidation behavior. It is recommended to use alloys with AlCrN coating. Originality/value: Original value of the paper is assessing of the oxidation resistance of Ti-46Al-7Nb-0.7Cr-0.1Si–0.2Ni-based intermetallic alloy at the conditions combining high temperature and sulphur and chlorine compounds-containing atmosphere. The novelty of this research deals with the mechanism of oxidation at such boundary conditions. This knowledge can support the design of parts made of the intermetallic alloy. The problem considered is currently important for aeroplane and automotive industry, especially for gas turbine manufacturers.
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Opole University of Technology, P.O. Box 321, 45-271 Opole, Poland
Bibliografia
  • [1] E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.
  • [2] C.M. Ward-Close, R. Minor, P.J. Doobar, Intermetallic-matrix composites-a review, Intermetallics 4 (1996) 217-229.
  • [3] F. Appel, M. Oehring, R. Wagner, Novel design concepts for gamma-base titanium aluminide alloys, Intermetallics 8 (2000) 1283-1312.
  • [4] Y. Wu, K. Hagihara, Y. Umakoshi, Improvement of cyclic oxidation resistance of Y-containing TiAl-based alloys with equiaxial gamma microstructures, Intermetallics 13 (2005) 879-884.
  • [5] B.G. Kim, G.M. Kim, C.J. Kim, Oxidation behaviour of TiAl-X (X=Cr, V, Si, Mo or Nb) intermetallics at elevated temperature, Scripta Metallurgica et Materialia 3/7 (1995) 1117-1125.
  • [6] M. Yoshihara, Y.W. Kim, Oxidation behaviour of gamma alloys designed for high temperature oxidation, Intermetallics 13 (2005) 952-958.
  • [7] V. Shmet, M. Yurechko, A.K.Tyagi, W.J. Quadakkers, L. Singheiser, The influence of Nb and Zr additions on the high temperature oxidation mechanism of γ-TiAl alloys in Ar/O2, Metals and Materials Society (1999) 783-790.
  • [8] S. Król, Cyclic oxidation of Ȗ-TiAl based multicomponent alloys with addition of Ta, Protection Against Corosion 11A (2005) 194-198 (in Polish).
  • [9] L. Huang, P.K. Liaw, C.T. Liu, Microstructural evolution of TiAl -intermetallic alloys containing tungsten and boron, Oak Ridge National Laboratory, Managed by UT Battelle for the Department of Energy, Proceedings paper 2, 2005.
  • [10] N. Toshio, I. Takeshi, M. Yatagai, T. Yoshioka, Sulfidation processing and Cr addition to improve oxidation resistance of TiAl intermetallics in air at 1173K, Intermetallics 8 (2000) 371-379.
  • [11] H. Clemens, H. Kestler, Processing and applications of intermetallic γ-TiAl-based alloys, Advanced Engineering Materials 9 (2000) 551-570.
  • [12] J. Małecka, Effect of an Al2O3 coating on the oxidation process of a γ-TiAl phase based alloy, Corrosion Science 63 (2012) 287-292.
  • [13] J. Małecka, Effect of Al2O3 and AlCrN coatings on 950°C cyclic oxidation behaviours of γ-TiAl, Journal of Achievements in Materials and Manufacturing Engineering 50/1 (2012) 40-46.
  • [14] M. Góral, G. Moskal, L. Swadźba, Gas phase aluminising of TiAl intermetallics, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 443-446.
  • [15] G. Moskal, Microstructure and oxidation behaviour of TiAlSi coatings on TiAlCrNb alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 263-266.
  • [16] M. Góral, G. Moskal, L. Swadźba, The influence of Si on oxidation resistance of aluminide coatings on TiAl alloy, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 459-462.
  • [17] M. Góral, G. Moskal, L. Swadźba, T. Tetsui, Structure and oxidation of Si modified aluminide coating deposited on TiAlNb alloy by slurry method, Journal of Achievements in Materials and Manufacturing Engineering 21 (2007) 75-78.
  • [18] Z.D. Xiang, S. Ros, P.K. Datta, Pack deposition of coherent aluminide coatings on γ-TiAl for enhancing its high temperature oxidation resistance, Surface and Coating Technology 161 (2002) 286-292.
  • [19] D.F. Bettridge, R. Wing, S.R.J. Saunders, The exploration of protective coating and deposition processes for nickelbase alloys and gamma titanium aluminides, Materials for Advanced Power Engineering 2 (1998) 961-976.
  • [20] Z. Tang, F. Wang, W. Wu, Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics, Surface and Coating Technology 99 (1998) 248-252.
  • [21] Z. Tang, L. Niewolak, V. Shemet, L. Singheiser, W.J. Quadakkers, F. Wang, W. Wu, A. Gil , Development of oxidation resistant coatings for γ-TiAl based alloys, Materials Science and Engineering A 328 (2002) 297-301.
  • [22] Z. Liu, T. Narita, The effect of water vapor on the oxidation behavior of γ-TiAl-Ag coatings at 1073K in air, Intermetallics 11 (2003) 795-805.
  • [23] S. Taniguchi, T. Shibata, T. Yamada, X. Liu, S. Zou, High temperature oxidation resistance of TiAl improved be IBEDSi3N4 coating, The Iron and Steel Institute of Japan International 33 (1993) 869-876.
  • [24] Y.C. Zhu, Y. Zhang, X.Y. Li, K. Fujita, N. Iwamoto, The influence of magnetron-sputtered SiO2 coatings on the cyclic oxidation behavior of γ-TiAl alloys, Materials Transactions 41 (2000) 1118-1120.
  • [25] M. Yoshimura, W. Urushihara, M. Yashima, M. Kakihana, CaTiO3 coating on TiAl by hydrothermal-electrochemical technique, Intermetallics 3 (1995) 125-128.
  • [26] I.C. Hsu, S.K. Wu, Oxidation improvement of Ti-48Al-2Cr-2Nb intermetallics by air plasma sprayed ZrO2-Ni-4.5wt.%Al coatings, Surface and Coating Technology 90 (1997) 6-13.
  • [27] Z.D. Xiang, S. Rose, J.S. Burnell-Gray, P.K. Datta, Co-deposition of aluminide and silicide coatings on γ-TiAl by pack cementation process, Journal of Materials Science 38 (2003) 19-28.
  • [28] Z.D. Xiang, S. Rose, P.K. Datta, Vapour phase codeposition of Al and Si to form diffusion coatings on γ-TiAl, Materials Science and Engineering A 356 (2003) 181-189.
  • [29] E. Lugscheider, C.W. Siry, S.R.J. Saunders, The behaviour of PVD SiAlN type coatings deposited on TiAl, Materials for Advanced Power Engineering 2 (1998) 1319-1327.
  • [30] J.C. Scheaffer, R.L. McCarron, High Temperature coatings for titanium aluminides, WL-TR-95-4108, General Electric Co Cincinnati OH aircraft Engine Technical Div, Final Report, 1994.
  • [31] A. Hernas, J. Dobrzański, Durability and destruction of the elements of boilers and turbines, Silesian University of Gliwice, 2003 (in Polish).
  • [32] S.C. Srivastava, K.M. Godiwalla, M.K. Banerjee, Fuel ash corrosion of boiler and superheater tubes, Journal of Material Science 32 (1997) 835-849.
  • [33] M. Pronobis, The modernization of power boilers, Publishing House WNT, Warsaw, 2002,
  • [34] H.J. Grabke, E. Reese, M. Spiegel, The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits, Corrosion Science 37 (1995) 1023-1043.
  • [35] J.N. Harb, E.E. Smith, Fireside corrosion in pc-fired boilers, Progress in Energy and Combustion Science 16 (1990) 169-190.
  • [36] J. Małecka, W. Grzesik, A. Hernas, An investigation on oxidation wear mechanisms of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic-based alloys, Corrosion Science 52 (2010) 263-272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-510e06d8-9bfd-4835-85ab-542aa843d98a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.