PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface probability model for estimation of size distribution on a conveyor belt

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimation of size distribution by image analysis is a key issue in mineral engineering. However, only the surface information of ore piles can be captured, which is a headache problem in this field while only a few researchers pay attention to this problem. A new surface probability model was proposed for estimation of size distribution on a conveyor belt based on the Chavez Model in this investigation. This model was tested and verified to have smaller errors in single size fraction but have bigger errors in multiple size fractions. Several error trends were found and a correction factor was introduced to correct the higher errors. A series of linear equations were developed to calculate this specific correction factor according to Dm (average particle size) and the height of pile. Therefore, empirical probability can be estimated by the specific correction factor and calculated probability, and the surface information of ore piles can be converted into the global information of piles.
Rocznik
Strony
591--606
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
Bibliografia
  • 1. Al-Thyabat S., Miles N.J., 2006. An improved estimation of size distribution from particle profile measurements. Powder Technology 166, 152–160.
  • 2. Al-Thyabat S., Miles N.J., Koh T.S., 2007. Estimation of the size distribution of particles moving on a conveyor belt. Minerals Engineering 20, 72–83.
  • 3. Casali A., Gonzalez G., Vallebuona G., Perez C., Vargas R., 2001. Grindability Softsensors based on Lithological Composition and On-Line Measurements. Minerals Engineering 14, 689–700.
  • 4. Chavez R., Cheimanoff N., Schleifer J., 1996. Sampling problems during grain size distribution measurements. In: Proceedings of the Fifth International Symposium on Rock Fragmentation by Blasting - FRAGBLAST 5. Montreal, Quebec, Canada, 245–252.
  • 5. Claudio A., Pablo A., Estévez A., 2011. Ore grade estimation by feature selection and voting using boundary detection in digital image analysis. International Journal of Mineral Processing 101, 28–36.
  • 6. Chatterjee S., Bandopadhyay S., Machuca D., 2010a. Ore Grade Prediction Using a Genetic Algorithm and Clustering based Ensemble Neural Network Model. Mathematical Geosciences 42, 309–326.
  • 7. Chatterjee S., Bhattacherjee A., Samanta B., Pal S.K., 2010b. Image-based Quality Monitoring System of Limestone Ore Grades. Computers in Industry 16, 391–408.
  • 8. Guyot O., Monredon T., LaRosa D., Broussaud A., 2004. VisioRock, an Integrated Vision Technology for Advanced Control of Comminution Circuits. Minerals Engineering 17, 1227–1235.
  • 9. Jayson T., Carl D., Gianni B., 2007. A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Minerals Engineering 20, 1129–1144.
  • 10. Kemeny J., Mofya E., Kaunda R., Lever P., 2001. Improvements in blast fragmentation models using digital image processing, in: Explosives in Mining Conference, Explo, 357–363.
  • 11. King R.P., 1982. Determination of the distribution of size of irregularly shaped particles from measurements on sections or projected areas. Powder Technology 32, 87–100.
  • 12. Ko Y. D., Shang H., 2011. Time delay neural network modeling for particle size in SAG mills. Powder Technology 205, 250–262.
  • 13. Petruk W., 1988a. Automatic image analysis for mineral beneficiation. Journal of Metals 40 (4), 29-31.
  • 14. Petruk W., 1988b. Automatic image analysis to determine mineral behaviour during mineral beneficiation, Process Mineralogy VIII. In: Carson, D.J.T., Vassiliou, A.H. (Eds.). The Minerals, Metals & Materials Society, 347–357.
  • 15. Petruk W., 1989, Short course on image analysis applied to mineral and earth sciences, Mineralogical Association of Canada, Ottawa.
  • 16. Petruk W., Wilson J.M.D., Lastra R., Healy R.E., 1991. An image analysis and materials balancing procedure for evaluating ores and mill products to obtain optimum recoveries. In: Proceedings of 23rd Annual Meeting of the Canadian Mineral Processors, 1–16 (Section 19).
  • 17. Perez C., Casali A., Gonzalez G., Vallebuona G., Vargas R., 1999. Lithological Composition Sensor based on Digital Image Feature Extraction, Genetic Selection of Features and Neural Classification. IEEE International Conference on Information Intelligence and Systems, Bethesda, MD, Oct.31-Nov.3, 236–241.
  • 18. Singh V., Rao S., 2006. Application of Image Processing in Mineral Industry: a Case Study of Ferruginous Manganese Ores. Mineral Processing and Extractive Metallurgy 115, 155–160.
  • 19. Singh N., Singh T. N., Tiwary A., Sarkar K.M., 2010. Textural identification of basaltic rock mass using image processing and neural network. Computers & Geosciences 14, 301–310.
  • 20. Sun J., Su B., 2013. Coal-rock interface detection on the basis of image texture features. International Journal of Mining Science and Technology 23, 681–687.
  • 21. Tessier J., Duchesne C., Bartolacci G., 2007. A Machine Vision Approach to On-line Estimation of Run-of-mine Ore Composition on Conveyor Belts. Minerals Engineering 20, 1129–1144.
  • 22. Vallebuona G., Arburo K., Casali A., 2003. A procedure to estimate weight particle distributions from area measurements. Minerals Engineering 16, 323–329.
  • 23. Yang H., Liu Y., Xie H., Xu Y., Sun Q., Wang, S., 2013. Integrative method in lithofacies characteristics and 3D velocity volume of the Permian igneous rocks in H area, Tarim Basin. International Journal of Mining Science and Technology 23, 167–172.
  • 24. Zhao Y., 2013. Multi-level denoising and enhancement method based on wavelet transform for mine monitoring. International Journal of Mining Science and Technology 23, 163–166.
  • 25. Zhang Z., Yang J., Ding L., Zhao Y.M., 2012. An improved estimation of coal particle mass using image analysis. Powder Technology 229, 178–184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-510b13e1-ad6f-4057-adf7-305c53016395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.