PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of small-scale farmland water conservancy construction mode in China

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to evaluate the construction mode of small-scale farmland water conservancy using secondary data from the China statistical yearbook (2000-2019), which was simply and statistically computed. To put it briefly, the simple linear regression model was used to analyse the number of small-scale reservoirs and irrigated areas relative to their capacities and effectiveness. The results showed that the number of small-scale reservoirs increased by 122.2 units of their capacity and the number of small-scale irrigated areas increased by 6.8 units of their effectiveness. The present study introduces the simple linear regression model and accounts for how the number of the small-scale reservoirs and irrigated areas has increased (the total number of reservoirs was 83,260 in 2000 and 98,822 in 2018) relative to their capacity and effectiveness, respectively. Of course, the capacity of water harvesting and the effectiveness of irrigated areas have shown a linear increase over time. Between 2000 and 2019, the capacity increased from 3842 to 7117 for large-scale reservoirs, from 746 to 126 for medium-scale reservoirs, and from 594 to 710 for small-scale reservoirs and their ranges were 3.2, 380, and 116, respectively. Furthermore, the findings of this evaluation provide insights for making decisions on water conservancy interventions.
Wydawca
Rocznik
Tom
Strony
78--83
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • Hunan Agricultural University, College of Economics, 1 Nonda Rd, Furong District, Changsha, China
autor
  • Hunan Agricultural University, College of Economics, 1 Nonda Rd, Furong District, Changsha, China
Bibliografia
  • China Statistics Press 2019. China statistical yearbook 2019 [online].[Access 10.10.2021]. Available at: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm
  • China Statistics Press 2020. China statistical yearbook 2020 [online]. [Access 10.10.2021]. Available at: http://www.stats.gov.cn/tjsj/ndsj/2020/indexeh.htm
  • FISHMAN R., DEVINENI N., RAMAN S. 2015. Can improved agricultural water use efficiency save India’s groundwater? Environmental Research Letters. Vol. 10 (8), 084022.
  • GEERTS S., RAES D. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. Vol. 96(9) p. 1275–1284. DOI 10.1016/j.agwat.2009.04.009.
  • GUO D. 1995. The 50-year glory of the water resources China water power press, Beijing. p. 16–19.
  • JIA J. 2016. A technical review of hydro-project development in China. Engineering. Vol. 2(3) p. 302–312. DOI 10.1016/J.ENG.2016.03.008.
  • LIU J., ZANG C., TIAN S., LIU J., YANG H., JI S., YOU L., LIU B., ZHANG M. 2013. Water conservancy projects in China: Achievements, challenges, and way forward. Global Environmental Change. Vol. 23(3) p. 633–643. DOI 10.1016/j.gloenvcha.2013.02.002.
  • LIU X., XIN L., LU Y. 2021. National scale assessment of the soil erosion and conservation function of terraces in China. Ecological Indicators. Vol. 129, 107940. DOI 10.1016/j.ecolind.2021.107940.
  • LIU Y., CHEN H., WANG X. 2020a. Research on green renovations of existing public buildings based on a cloud model – TOPSIS method. The Journal of Building Engineering. Vol. 34 p. 101930. DOI 10.1016/j.jobe.2020.101930.
  • LIU Y., FANG F., LI Y. 2014. Key issues of land use in China and implications for making. Land Use Policy. Vol. 40 p. 6–12. DOI 10.1016/j.landusepol.2013.03.013.
  • LIU Y., HU X., ZHANG Q., ZHENG M. 2017. Improving agricultural water use efficiency: A quantitative study of Zhangye City using the static CGE model with a CES water−land resources account. Sustainability. Vol. 9(2), 308 DOI 10.3390/su9020308.
  • LU X., ZHANG Y., ZOU Y. 2021. Evaluation of the effect of cultivated land protection policies based on the cloud model: A case study of Xingning, China. Ecological Indicators. Vol. 131, 108247. DOI 10.1016/j.ecolind.2021.108247.
  • MAECK A., DEL SONTRO T., MC GINNIS D.F., FISCHER H., FLURY S., SCHMIDT M., FIETZEK P., LORKE A. 2013. Sediment trapping by dams creates methane emission hots. Environmental Science & Technology. Vol. 47(15) p. 8130–8137. DOI 10.1021/es4003907.
  • MoLRNDRC 2017. National land consolidation plan (2016–2020). Ministry of Land and Resources, National Development and Reform Commission pp. 30. [In China].
  • PU L., ZHANG S., YANG J., YAN F., CHANG L. 2019. Assessment of high-standard farmland construction effectiveness in Liaoning Province during 2011–2015. Chinese Geographical Sciences. Vol. 29 p. 667–678. DOI 10.1007/s11769-019-1061-z.
  • QIN X., LIU J., JIA H., LU H., XIA X., ZHOU L., MU G., XU Q., JIA Y. 2012. New evidence of agricultural activity and environmental change was associated with the ancient Loulan kingdom, China, around 1500 years ago. The Holocene. Vol. 22 p. 53–61. DOI 10.1177/0959683611405234.
  • SEARS L., CAPARELLI J., LEE C., PAN D., STRANDBERG G., VUU L., LAWELL C. L. 2018. Jevons paradox and efficient irrigation technology. Sustainability. Vol. 10(5), 1590. DOI 10.3390/su10051590.
  • SHIJIN W., QIUDONG Z., TAO P. 2021. Assessment of water stress level about global glacier-covered arid areas: A case study in the Shule River Basin, northwestern China. Journal of Hydrology: Regional Studies. Vol. 37, 100895. DOI 10.1016/j.ejrh.2021.100895.
  • WANG C., WANG G., FENG Z., JI X., LI Q., ZHANG Z., SONG D. 2011. Strengthen water conservancy construction, use water resources scientifically, and develop modern agriculture. Procedia Environmental Sciences. Vol. 10 Part B p. 1595–1600. DOI 10.1016/j.proenv.2011.09.253.
  • WANG F., MU X., LI R., FLESKENS L., STRINGER L.C., RITSEMA C.J. 2015. Co-evolution of soil and water conservation policy and human–environment linkages in the Yellow River Basin since 1949. Science of The Total Environment. Vol. 508 p. 166–177. DOI 10.1016/j.scitotenv.2014.11.055.
  • WANG R. 2017. A discussion on the improvement of the construction and management of small-scale farmland water conservancy. 4th International Conference on Education, Management and Computing Technology (ICEMCT 2017). Advances in Social Science, Education and Humanities Research. Vol. 101 p. 345–349. DOI 10.2991/icemct-17.2017.78.
  • WANQI Y., DAOLIN Z., HUAIZHI T. 2016. Reshaping and innovation of China land consolidation strategy. Transactions of The Chinese Society of Agricultural Engineering. Vol. 32(4) p. 1–8.
  • YANG Y., ZHANG J., YAN W., ZHANG Y., WANG J., WANG G., YAN F., 2021. Impact assessment of water diversion project on the urban aquatic ecological environment. Ecological Indicators. Vol. 125, 107496. DOI 10.1016/j.ecolind.2021.107496.
  • ZHANG N., LU W., DONG H. 2012. Management efficiency and participatory mechanism of farmland water conservancy in China: An empirical analysis based on stochastic frontier approach. Journal of Natural Resources. Vol. 27(3) p. 353–363. DOI 10.11849/zrzyxb.2012.03.001.
  • ZHOU F., ZHANG W., SU W., PENG H., ZHOU S. 2021. Spatial differentiation and driving mechanism of rural water security in typical “engineering water depletion” of karst mountainous area Alesson of Guizhou, China. Science of the Total Environment. Vol. 793, 148387. DOI 10.1016/j.scitotenv.2021.148387.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51096c4b-580a-48c0-acac-24efef5d00af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.