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POWER IN MODEL OF TWO − DIMENSIONAL PERCOLATION 
ON HEXAGONAL ELECTRICAL LATTICE 

 

Abstract 
 

Introduction and aims: This paper presents a power in some model of two-dimensional percola-
tion on hexagonal lattice for various frequencies of force voltage in matrix notation. Main aim is 
some determination of current characteristics for created model of percolation in dependence of 
shorted bounds in accordance with a right algorithm. 
Material and methods: Taking into account the current characteristics and other parameters 
some phase characteristics of percolation model have been determined for various frequencies. 
Analytical and numerical methods in MathCAD program were shown in the paper. 
Results: Percolation current increases together with some increase of number of shorted-bounds. 
The characteristics of percolation current for frequency from 50Hz to 5000Hz have the similar 
form and increasing trend. The value of active power of percolation model increases during some 
increase of the number of shorted-bounds and has zero value in percolation threshold. The charac-
teristics of active and reactive power for frequency from 50 Hz to 5000 Hz have the similar form. 
For frequency 10 Hz the graphs of reactive power are symmetrically placed in relation to x-axis. 
Conclusion: Presented percolation model on hexagonal lattice has been verified taking using nu-
merical values of percolation threshold. 

Keywords: Power, two-dimensional model, percolation, phase characteristic. 
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MOC W MODELU DWUWYMIAROWEJ PERKOLACJI 
NA SZEŚCIOKĄTNEJ SIECI ELEKTRYCZNEJ 

 

Streszczenie 
 

Wstęp i cele: W artykule przedstawiono w zapisie macierzowym moc w modelu dwuwymiarowej 
perkolacji określonej na sześciokątnej sieci dla różnych częstotliwości napięcia. Głównym celem 
jest wyznaczenie charakterystyk prądu dla utworzonego modelu perkolacji w zależności od zwie-
rania wiązań sieci zgodnie z przyjętym algorytmem. 
Materiał i metody: Biorąc pod uwagę charakterystyki prądowe i wartości parametrów niektóre 
cechy fazowe modelu perkolacji wyznaczone zostały dla różnych częstotliwości prądu. Zastoso-
wano metodę analityczno i numeryczną programie MathCAD. 
Wyniki: Prąd perkolacji wzrasta równocześnie ze wzrostem liczby zrywanych wiązań. Charakte-
rystyki prądu perkolacji dla częstotliwości od 50Hz do 5000Hz mają podobne grafy i trend wzra-
stający. Wartość mocy czynnej w modelu perkolacji wzrasta równocześnie ze wzrostem liczby 
zrywanych wiązań oraz ma wartość zero w progu perkolacji. Charakterystyki mocy czynnej            
i biernej dla częstotliwości od 50 Hz do 5000 Hz mają podobne grafy. Natomiast dla częstotliwo-
ści 10 Hz charakterystyka mocy biernej jest położona symetrycznie względem osi OX.  
Wniosek: Pokazany model perkolacji na heksagonalnej sieci został zweryfikowany z uwzględnie-
niem wartości liczbowych progu perkolacji. 

Słowa kluczowe: Moc, model dwuwymiarowy, perkolacja, charakterystyka faz. 
(Otrzymano: 01.10.2012; Zrecenzowano: 15.08.2013; Zaakceptowano: 30.08.2013) 
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1. Introduction 
 

 Percolation theory (lat. percolare – to percolate) contains some statistical and geometrical 
models. It was created by mathematician J.M. Hammersley in 1957 [7]. Percolation theory is 
used for description of very disordered systems and situations with stochastic geometry.  

That theory is very interesting because it has some incidental elements in mathematical 
modelling and good defines a model of random surface processes.  
 In practice aspect percolation theory is concerned with some effects of changeable range of 
reciprocal interactions in disordered topological systems. Moreover in disordered systems 
with interactions, density, packing or concentration increasing suddenly occur some long-term 
ranges. 
 Sudden occurring of long-term ranges is defined as some percolation transition. There are 
two kinds of percolation on lattice structures. There is some percolation on bounds and perco-
lation on nodes. 
 The bound is some connection between two nodes. Bound occurring is defined by some 
probability p, where 0 ≤ p ≤ 1. Moreover when there is not any bound, than a probability is 
defined in the form (1 − p).  
 Increase of some concentration p means some sudden occurring of percolation threshold 
pc. Occurring of percolation threshold pc means some existing of unlimited and expanded 
percolation cluster. In the other hand percolation cluster means a set of bounds or nodes con-
nected with adjacent ones. 
 The models of two-dimensional percolation are created on some lattices. As a rule, that 
kind of model is defined by percolation threshold using bounds pc and sites 1

cp .  

The percolation thresholds for selected lattices, which create above models, are shown in 
the table 1 [16]. 

 
  Table 1. Percolation thresholds for bounds and sites of selected lattices  

No. Kind of                 
lattice 

Dimension              
d 

Co-ordinating 
number                     

q 

Percolation 
threshold  

pc 

Percolation 
threshold 

1
cp  

1 Triangular 2 6 0,3473 0,5000 

2 Square 2 4 0,5000 0,5930 

3 Cagomé 2 4 0,4500 0,6527 

4 Hexagonal 2 3 0,6527 0,698 

 
 The authors did not find in literature a problem of power for two-dimensional percolation 
model on lattice with series bounds R and C in matrix form by using the complex numbers. 
Moreover, the authors did not find in literature some current and phase characteristics of per-
colation model on some lattices in complex notation.  

 Thus the main aims of this paper are:  

• modelling of two-dimensional percolation on hexagonal lattice in matrix notation with 
bounds, which include some series connection of elements R and C, 

• determination of current characteristics for created percolation model, 
• determination of percolation threshold in percolation model on hexagonal lattice, 
• determination of power characteristics for created percolation model. 
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2.  Physical interpretation of power in percolation model on hexagonal electrical lattice 
 
 Model of percolation (stochastic and geometric) on some hexagonal lattice was created on 
the base of surface of VH polymer insulators (Fig. 1). The VH polymer insulators surface 
erode in acting of electric filed in determined by the surroundings conditions.  
 The VH polymer, which is some space structure of polymer chains, may be modelled by 
square lattice [6], [11].  
 The authors decided to make the right modelling using the hexagonal lattice. Taking into 
account fact that surface conductivity of insulator is more bigger from the inner conductivity 
– the polymer insulator in cylinder form may be modelled by a lattice in a ring form in 3D 
system (Fig. 2). Evolving that ring, we obtain a net with bounds on hexagonal lattice in 2D 
system. 
 The bounds situation and simulation of their destruction (i.e. shorted-bound) is defined in 
the following form:  
• polymer bounds represent some real dielectrics, which additional scheme may be used as      

a series connections 〈 Zk,k = R + 1/(jωC) 〉 of the elements R and C [3], [4],  
• shorting of insulator polymer bounds means some impurities occurring with big conduc-

tance and also carbonized places on surface [9], [14], i.e. shorted-bound has some imped-

ance 〈Zk,k = 0〉, 
•  bound destroying occurs as a uniform process.  
   

  
Fig. 1. Model of polymer insulator:  

1 - insulator cylinder surface,  
2 - upper electrode, 3 - lower electrode,  

L- insulator length, φ - insulator diameter 
Source: Elaborated by the Authors 

Fig. 2. Model of polymer insulator with square lattice:  
AC - insulator electric circuit,  

1 - upper electrode, 2 - lower electrode 
Source: Elaborated by the Authors 
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3. Analytical form of power in percolation model on hexagonal lattice in matrix notation 
     
3.1 Definition of percolation threshold 
 
 Percolation threshold pc of two-dimensional percolation model created on hexagonal lat-
tice during short-bounding is defined by the following formula: 

∑

∑

=

=

+
= n

1i
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m

1i
i

c

NZw

Nz
p  

 
 

(1) 

where the symbol Ni means the number of lattice bounds (1 ≤ i ≤ n), Nzi - the number of lat-
tice short-bounds (1≤ i ≤ m <n), Zw1 – one bound of inner impedance of voltage source, for 
m, n ∈ N. 
 During the shorting bounds of lattice with applicable forced voltage sudden occurs a perco-
lation threshold.  The specific quality of percolation threshold (1) is a sudden increase of cur-
rent, which tends to infinity.  
 

3.2 Power characteristics of percolation model on hexagonal lattice  
 

 Model of two-dimensional percolation on hexagonal lattice contains twenty one meshes 
(i.e. unit cells). Mesh structure of lattice is created by some branches (i.e. bounds), which re-
fer to polymer chains. But bounds of meshes are created by some real dielectrics presented by 
some series connections of the elements R and C.  The analysed model can be described by 
some method of Maxwell mesh currents [1], [2]. The figure 3 shows some structure of two-
dimensional percolation model.      

 
Fig. 3. Model of percolation on hexagonal lattice with algorithm of bounds destruction:  

1 – upper electrode, 2 – lower electrode, E – electromotive force, AL – algorithm of bounds destruc-
tion Ih – percolation current, pc - percolation threshold, Iok,m mesh currents for k=1,2,..., m≤n, n∈N, 

Zw – impedance of polymer bounds  
〈 i.e. series connections of elements R and C,  Zk,k = R + 1/(jωC) for k = 0, 2, 4, 6, 8, ... 〉 

Source: Elaborated by the Authors 
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 The structure of two-dimensional percolation model is described by the matrix equation:  

Zo ⋅ Io = Eo , (2) 

where the symbol Zo means matrix of mesh impedance for percolation model, which de-
scribes some structure of bounds on square lattice, Io - one-column matrix, which is created 
by the vector of mesh current of percolation model on hexagonal lattice, Eo - one-column 
matrix, which is created by the vector of electromotive mesh forces of percolation model on 
hexagonal lattice. Matrices Zo, Io and Eo are defined by the following formulae: 
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(5) 

 Left-sided multiplying the equation (2) by the inverse matrix (Zo)–1 to impedance mesh 
matrix Zo we obtain the following matrix equation:  

(Zo)–1 ⋅ Zo ⋅ Io  = (Zo) –1 ⋅ Eo . (6)  

 Taking into account the formula (6) and following matrix properties 

(Zo) –1 ⋅ Zo  =  I   and    I⋅ Io = Io (7) 

where I - identity matrix. We obtain some one-column matrix of mesh currents in the form: 

Io = (Zo) –1⋅  Eo . (8) 

 In the case of shorted bounds for hexagonal lattice in the sequence defined by AL algo-
rithm, shown on the figure 1, the one-column matrix of mesh currents describes the following 
matrix equation:  

Io(Nh) = [Zo(Nh)] –1⋅ Eo (9) 
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where the symbol Nh means some vector of shorted-bounds number of lattice.                           
 The current of two-dimensional percolation model Is, created on hexagonal lattice (Fig. 1), is 
equal to mesh current Io1. The mesh current Io1 refers to the first row of mesh current vector.  

For one-column matrix X: 
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(10) 

we obtain the one-row transpose matrix XT, which has the following form: 

XT = [1,0,…,0] (11) 

 Left-sided multiplying the matrix equation (9) by matrix (11), we obtain the current Is in 
the following matrix notation: 

Ih  = XT ⋅ [Zo(Nh)]-1⋅ Eo (12) 
where 

Ih  = XT ⋅ Io(Nh) (13) 

and the symbol XT means, in the other hand, some neutralization vector of mesh currents. 
 
3.3 Power for percolation model on hexagonal electrical lattice  

 
  One-column matrix of impedance for two-dimensional percolation model created on hex-

agonal lattice (i.e. series structure of bounds R and C) is defined from the 2-nd Kirchoff’s law 
in the following matrix form: 

Ih·(Zh  + Zw  ) = E (14) 

where the symbol Zh – means a one-column matrix of impedance for percolation model cre-
ated on hexagonal lattice, Ih – one-column matrix, which creates a current vector of percola-
tion model on hexagonal lattice, E – one-column matrix, which rows are some values of elec-
tromotive force of percolation model created on hexagonal lattice, Zw – one-column matrix, 
which creates some inner impedance of electromotive force of percolation model.  
 Left-sided multiplying the matrix equation (14) by transverse matrix of the matrix Ihf to 
the current matrix of percolation model we obtain the following matrix equation: 

(Ih)-1⋅Ih ⋅(Zh  + Zw) = (Ih)-1⋅E . (15) 

Thus we obtain:  

Zh  + Zw   = (Ih)-1⋅E . (16) 

 After both-sided subtraction of the matrix Zw, we totally obtain a one-column impedance 
matrix of percolation model in the following form: 

Zh = (Ih)-1⋅E – Zw . (17) 

 Power, in matrix notation, for percolation model on hexagonal lattice is determined from 
the following matrix equation [3]: 

Sh(Nh) = Ih1⋅Zh1⋅Ih* ≡ Ph + jQh (18) 
where 
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means a diagonal matrix of currents for percolation model, and  
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shows a diagonal matrix of impedance, and a one-column matrix 
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(21) 

is some vector of coupling currents.    
       Taking into account the matrix equation (18)  it is possible to determine the active power 
Ph of percolation model on hexagonal lattice from the following relation:  

Ph = Re[Sh(Nh)] (22) 
where 
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(23) 

is the one-column matrix as a vector of active power. 
 Also using the matrix equation (18) it is possible to determine the reactive power Qh of 
percolation model from the following relation:  

Qh = Im[Sh(Nh)] ( 24)                                
 where 
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( 25)                                

is the one-column matrix as a vector of reactive power. 
 
4.  Numerical analysis of power and currents for percolation model on hexagonal lattice 
      
4.1 Characteristics of current in complex notation 
 

 Obtained current characteristics of percolation model on hexagonal lattice for series 
bounds of the elements R (i.e. resistors) and C (i.e. condensers) in dependence from method 
of shorted-bounds for frequency f10 = 10 Hz, f50 = 50 Hz, f100 = 100 Hz, f200 = 200 Hz, 
f5000 = 5000 Hz, calculated by using the formula (21) are shown on the figure 4. 

 

 
Fig. 4. Current characteristic Ih in [A] of percolation model on hexagonal lattice for frequency of 

forced voltage 10 [Hz], 50 [Hz], 100 [Hz], 200 [Hz] and 5000 [Hz] vs. Number of shorted bounds N 
Source: Elaborated by the Authors 
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4.2 Characteristics of active and reactive power in complex notation 
 
 Obtained characteristics of active and reactive power of percolation model on hexagonal 
lattice for shorted-bounds of the elements R (i.e. resistors) and C (i.e. condensers) in depend-
ence from method of shorted-bounds for frequency f10 = 10 Hz, f50 = 50 Hz, f100 = 100 
Hz, f200 = 200 Hz, f5000 = 5000 Hz calculated by using the formulae (23) and (25) are 
shown on the figure 5. 

 
Fig. 5. Characteristics of active power Re(Sh f) in [W] and reactive power Im(Sh f) in [var]  

of percolation model on hexagonal lattice for frequency of forced voltage  
10 [Hz], 50 [Hz], 100 [Hz], 200 [Hz] and 5000 [Hz] vs.  

Number of shorted bounds N 
Source: Elaborated by the Authors 

 
5.  Verification of simulation results 
 

  Taking into account the simulation results of created percolation model on various lattices 
were determined percolation thresholds for bounds using the formula (1). The calculation re-
sults are shown on the table 2.  

Table 2. Numerical values of percolation thresholds determined for selected lattices by the formula (1) 

No. Kind of lattice 
Dimension                 

d 
Co-ordinating 

number q 
Percolation                     
threshold pc 

1 Triangular 2 6 0,3333 

2 Square 2 4 0,5000 

3 Hexagonal 2 3 0,6720 



A.A. Czajkowski, P.S. Frączak 
 

 86 

6. Conclusions 
 
•  Percolation current increases together with some increase of number of shorted-bounds. It 

impetuously increases in percolation threshold. The characteristics of percolation current 
for frequency from 50Hz to 5000Hz have the similar form and increasing trend.  

•  The value of active power of percolation model increases during some increase of the num-
ber of shorted-bounds and has zero value in percolation threshold. The characteristics of ac-
tive and reactive power for frequency from 50 Hz to 5000 Hz have the similar form. But for 
frequency 10 Hz the characteristics of reactive power are symmetrically placed in relation 
to x-axis. 
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