PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Present-day Horizontal Mobility in the Serbian Part of the Pannonian Basin; Inferences from the Geometric Analysis of Deformations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In tectonically complex environments, such as the Pannonian Basin surrounded by the Alps–Dinarides and Carpathians orogens, monitoring of recent deformations represents very challenging matter. Efficient quantification of active continental deformations demands the use of a multidisciplinary approach, including neotectonic, seismotectonic and geodetic methods. The present-day tectonic mobility in the Pannonian Basin is predominantly controlled by the northward movement of the Adria micro-plate, which has produced compressional stresses that were party accommodated by the Alps-Dinarides thrust belt and partly transferred towards its hinterland. Influence of thus induced stresses on the recent strain field, deformations and tectonic mobility in the southern segment of the Pannonian Basin has been investigated using GPS measurements of the horizontal mobility in the Vojvodina area (northern Serbia).
Czasopismo
Rocznik
Strony
1626--1654
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Chair of Dynamic Geology, Belgrade, Serbia
  • University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
autor
  • University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
  • University of Belgrade, Faculty of Mining and Geology, Chair of Dynamic Geology, Belgrade, Serbia
Bibliografia
  • Ambrožič, T. (2004), Deformacijska analiza po postopku Karlsruhe, Geodetski Vestnik 48, 3, 315-331, DOI: 10.15292/geodetski-vestnik.2013.03.479-497.
  • Anderson, H., and J. Jackson (1987), Active tectonics of the Adriatic region, Geophys. J. Roy. Astron. Soc. 91, 3, 937-983, DOI: 10.1111/j.1365-246X. 1987.tb01675.x.
  • Araszkiewicz, A., and M. Jarosiński (2013), Reliability of calculation of the lithosphere deformations in tectonically stable area of Poland based on the GPS measurements. In: Geophysical Research Abstracts, EGU General Assembly 2013, Vol. 15, EGU2013-4359.
  • Bada, G. (1999), Cenozoic stress field evolution in the Pannonian basin and surrounding orogens, Inferences from kinematic indicators and finite element stress modelling, Ph.D. Thesis, Vrije Universiteit, Amsterdam, 204 pp.
  • Bada, G., S. Cloetingh, P. Gerner, and F. Horváth (1998), Sources of recent tectonic stress in the Pannonian region: inferences from finite element modelling, Geophys J. Int. 134, 1 87-101, DOI: 10.1046/j.1365-246x.1998.00545.x.
  • Bada, G., F. Horváth, P. Dovenyi, P. Szafian, G. Windhoffer, and S. Cloetingh (2007), Present-day stress field and tectonic inversion in the Pannonian basin, Glob, Planet. Change 58, 1-4, 165-180, DOI: 10.1016/j.gloplacha. 2007.01.007.
  • Bennett, R.A., S. Hreinsdóttir, G. Buble, T. Bašić, Ž. Bačić, M. Marjanović, G. Casale, A. Gendaszek, and D. Cowan (2008), Eocene to present subduction of southern Adria mantle lithosphere beneath the Dinarides, Geology 36, 1, 3-6.
  • Biagi, L., and A. Dermanis (2006), The treatment of time-continuous GPS observations for the determination of regional deformation parameters. In: F. Sanso and A.J. Gil (eds.), Geodetic Deformation Monitoring: From Geophysical To Geodetic Roles, IAG Symposia, Vol. 131, 83-94, Springer, Berlin.
  • Bogusz, J., and M. Figurski (2012), GPS-derived height changes in diurnal and subdiurnal timescales, Acta Geophys. 60, 2, 295-317, DOI: 10.2478/s11600- 011-0074-5.
  • Bogusz, J., A. Klos, M. Figurski, M. Jarosinski, and B. Kontny (2013), Investigation of the reliability of local strain analysis by means of the triangle modelling, Acta Geodyn. Geomater. 10, 3, 171, 293-305, DOI: 10.13168/AGG.2013. 0029.
  • Cacoń, S., O. Švábenský, B. Kontny, J. Wiegel, O. Jarmoz, K. Ćmielewski, J. Bosy, J. Kaplon, and R. Machotka (2004), Deformation analysis of the upper part of the Earth crust in the Snieznik massif (Polish and Czech sides between 1993 and 2003), Acta Geodyn. Geomater.1, 3, 135, 59-67.
  • Caspary, W.F. (2000), Concepts of Networks and Deformation Analysis, 3rd corr. ed., University of New South Wales.
  • Cloetingh, S., and E. Burov (2011), Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms, Basin Res. 23, 3, 257-290, DOI: 10.1111/j.1365-2117.2010.00490.x.
  • Cloetingh, S., L. Matenco, G. Bada, C. Dinu, and V. Mocanu (2005), The evolution of the Carpathians–Pannonian system: Interaction between neotectonics, deep structure, polyphase orogeny sedimentary basins in a source to sink natural laboratory, Tectonophysics 410, 1-4, 1-14, DOI: 10.1016/j.tecto. 2005.08.014.
  • Cloetingh, S., G. Bada, L. Matenco, A. Lankreijer, F. Horváth, and C. Dinu (2006), Modes of basin (de)formation, lithospheric strength and vertical motions in the Pannonian–Carpathian system: inferences from thermo-mechanical modelling, Geol. Soc. London Mem. 32, 207-221, DOI: 10.1144/GSL. MEM.2006.032.01.12.
  • Csontos, L. (1995), Tertiary tectonic evolution of the Intra-Carpathian area: a review, Acta Vulcan. 7, 1-13.
  • Dermanis, A., and E. Livieratos (1983), Applications of deformation analysis in geodesy and geodynamics, Rev. Geophys. Space Phys. 21, 1, 41-50, DOI: 10.1029/RG021i001p00041.
  • Frisch, W., J. Kuhlemann, I. Dunkl, and A. Brügel (1998), Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion, Tectonophysics 297, 1-4, 1-15, DOI: 10.1016/S0040- 1951(98)00160-7.
  • Gerner, P., G. Bada, P. Dővényi, B. Műller, M.C. Onescu, S. Cloetingh, and F. Horváth (1999), Recent tectonic stress and crustal deformation in and around the Pannonian basin: data and models, Geol. Soc. Lond. Spec. Publ. 156, 269-294, DOI: 10.1144/GSL.SP.1999.156.01.14.
  • Grenerczy, G., and A. Kenyeres (2006), Crustal deformations between Adria and the European platform from space geodesy. In: N. Pinter, G. Gyula, J. Weber, S. Stein, and D. Medak (eds.), The Adria Microplate: GPS Geodesy, Tectonics and Hazards, NATO Science Series: IV. Earth and Environmental Sciences, Vol. 61, Springer, 321-334, DOI: 10.1007/1-4020-4235-3_22.
  • Grenerczy, G., G. Sella, S. Stein, and A. Kenyeres (2005), Tectonic implications of the GPS velocity field in the northern Adriatic region, Geophys. Res. Lett. 32, 16, L16311, DOI: 10.1029/2005GL022947.
  • Heck, B. (1983), Das Analyseverfahren des geodätishen Instituts der Universität Karlsruhe Stand 1983, Deformationsanalysen ‘83, Schriftenreihe HSBw, Heft 9, München, (in German).
  • Horváth, F. (1993), Towards a mechanical model for the formation of the Pannonian basin, Tectonophysics 226, 1-4, 333-357, DOI: 10.1016/0040-1951(93) 90126-5.
  • Horváth, F., and S.A.P.L. Cloetingh (1996), Stress-induced late-stage subsidence anomalies in the Pannonian basin, Tectonophysics 266, 1-4, 287-300, DOI: 10.1016/S0040-1951(96)00194-1.
  • Horváth, F., and J. Rumpler (1984), The Pannonian basement: extension and subsidence of an Alpine orogen, Acta Geol. Hung. 27, 229-235.
  • Horváth, F., G. Bada, P. Szafian, G. Tari, A. Adam, and S. Cloetingh (2006), Formation and deformation of the Pannonian Basin: Constraints from observational data, Memoirs 32, 1, 191-206, DOI: 10.1144/GSL.MEM.2006.032. 01.11.
  • Jarosiński, M. (2012), Compressive deformations and stress propagation in intracontinental lithosphere: finite element modeling along the Dinarides– East European Craton profile, Tectonophysics 526-529, 24-41, DOI: 10.1016/ j.tecto.2011.07.014.
  • Jarosiński, M., F. Beekman, G. Bada, and S. Cloetingh (2006), Redistribution of recent collision push and ridge push in Central Europe: insights from FEM modelling, Geophys. J. Int. 167, 2, 860-880, DOI: 10.1111/j.1365-246X. 2006.02979.x.
  • Jarosiński, M., F. Beekman, L. Matenco, S. Cloetingh (2011), Mechanics of basin inversion: Finite element modelling of the Pannonian Basin System, Tectonophysics 502, 1-2, 121-145, DOI: 10.1016/j.tecto.2009.09.015.
  • Magyar, I., A. Fogarasi, G. Vakarcs, L. Buko, and G. Tari (2006), The largest hydrocarbon field discovered to date in Hungary: Algyő. In: J. Golonka and F.J. Picha (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, AAPG Memoirs, Vol. 84, 619-632, DOI: 10.1306/ 985734M843142.
  • Marović, M., I. Djoković, L. Pešić, S. Radovanović, M. Toljić, and N. Gerzina (2002), Neotectonics and seismicity of the southern margin of the Pannonian basin in Serbia, EGU Stephan Mueller Spec. Publ. Ser. 3, 277- 295.
  • Marović, M., M. Toljić, Lj. Rundić, and J. Milivojević (2007), Neoalpine tectonics of Serbia, Serbian Geological Society, Ser. Monographie, Belgrade, 87 pp. and map.
  • Martin, M., F. Wenzel, and CALIXTO Working Group (2006), High-resolution teleseismic body wave tomography beneath SE-Romania – II. Imaging of a slab detachment scenario, Geophys. J. Int. 164, 3 579-595, DOI: 10.1111/ j.1365-246X.2006.02884.x.
  • Matenco, L., and D. Radivojević (2012), On the formation and evolution of the Pannonian Basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides, Tectonics 31, 6, TC6007, DOI: 10.1029/2012TC003206.
  • Mihailović, K., and I. Aleksić (1994), Deformaciona Analiza Geodetskih Mreža, Gradjevinski Fakultet, Institut za Geodeziju, Beograd.
  • Mihailović, K., and I. Aleksić (2008), Koncepti Mreža u Geodetskom Premeru, Geokarta, Beograd.
  • Pamić, J. (2002), The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean, Eclogae Geol. Helv. 94, 1-15.
  • Schmid, S.M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schefer, R. Schuster, M. Tischler, and K. Ustaszewski (2008), The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci. 101, 1, 139-183, DOI: 10.1007/s00015-008-1247-3.
  • Stegena, L., B. Géczy, and F. Horváth (1975), Late Cenozoic evolution of the Pannonian Basin, Tectonophysics 26, 1-2, 71-90, DOI: 10.1016/0040- 1951(75) 90114-6.
  • Straub, Ch.S. (1996), Recent crustal deformation and strain in the Marmara Sea region, NW Anatolia Inferred from GPS Measurements, Ph.D. Thesis, ETH, Zurich.
  • Szafian, P., F. Horváth, and S. Cloetingh (1997), Gravity constraints on the crustal structure and slab evolution along a transcarpathian transect, Tectonophysics 272, 2-4, 233-247, DOI: 10.1016/S0040-1951(96)00260-0.
  • Szostak-Chrzanowski, A., W. Prószyński, and W. Gambin (2006), Continuum mechanics as a support for deformation monitoring, analysis and intrpretation, In: H. Kahmen and A. Chrzanowski (eds.), Proc. 3rd IAG / 12th FIG Symposium, 22-24 May 2006, Baden.
  • Talich, M. (2007), Geometrical analysis of deformation measurement using continuum mechanics by web application. In: FIG Working Week, 13-17 May 2007, Hong Kong SAR, China.
  • Talich, M. (2008), Practical advantages of using the mechanics of continuum to analyse deformations obtained from geodetic survey. In: Measuring the Changes – joint symposia of 13th FIG Int. Symp. on Deformation Measurements and Analysis and 4th IAG Symp. on Geodesy for Geotechnical and Structural Engineering, LNEC, 12-15 May, Lisbon, Portugal, available from: http://www.fig.net/commission6/lisbon_2008/papers/pas07/pas07_ 03_talich_mc056.pdf.
  • Talich, M. (2012), Creation of strain maps from velocity field of deformation by online tools. In: Space Geodesy and Earth System, 18-21 August 2012, Shanghai, China.
  • Talich, M., and J. Havrlant (2008), Application of deformation analysis and its new possibilities. In: Measuring the Changes – joint symposia of 13th FIG Int. Symp. on Deformation Measurements and Analysis and 4th IAG Symp. on Geodesy for Geotechnical and Structural Engineering, LNEC, 12-15 May, Lisbon, Portugal, available from: http://www.fig.net/commission6/lisbon_ 2008/papers/pst02/pst02_05_talich_mc057.pdf.
  • Tesauro, M., C. Hollenstein, R. Egli, A. Geiger, and H.G. Kahle (2006), Analysis of central western Europe deformation using GPS and seismic data, J. Geodyn. 42, 4-5, 194-209, DOI: 10.1016/j.jog.2006.08.001.
  • Toljić, M., L. Matenco, M.N. Ducea, U. Stojadinović, J. Milivojević, and N. Đerić (2013), The evolution of a key segment in the Europe–Adria collision: The Fruška Gora of northern Serbia, Global Planet Change 103, 39-62, DOI: 10.1016/j.gloplacha.2012.10.009.
  • Tóth, L., P. Mónus, T. Zsíros, and M. Kiszely (2002), Seismicity in the Pannonian Region – earthquake data, EGU Stephan Mueller Spec. Publ. Ser. 3, 9-28.
  • Vaniček, P., and J.E. Krakiwsky (1982), Geodesy, the Concepts, Elsevier Science B.V., Amsterdam.
  • Webster, R., and M.A. Oliver (2007), Geostatistics for Enviromental Scientist, Wiley & Son, Ltd.
  • Welsch, W.M. (1983), Finite elements analysis of strain patterns from geodetic observations across a plate margin, Tectonophysics 97, 1-4, 57-71, DOI: 10.1016/0040-1951(83)90125-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5100212a-ce2f-495e-a416-4922732233ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.