PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D-printed tool shoulder design for the analogue modelling of bobbin friction stir weld joint quality

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A variety of tool shoulder designs comprising three families i.e. blade, spiral and circular shaped scrolls, were produced to improve the material flow and restrictions to avoid the tunnel void. The bobbin tools were manufactured by 3D printing additive manufacturing technology using solid filament. The butt weld joint was produced by each tool using plasticine as the workpiece material. The apparent surface features and bi-colour cross-sections provided a physical flow comparison among the shoulder designs. For the bobbin friction stir welding (BFSW), the tool shoulder with a three-spiral design produced the most stability with the best combination of the flow patterns on surface and cross-sections. The circular family tools showed a suitable intermixing on the surface pattern, while the blade scrolls showed better flow features within the cross-sections. The flow-driven effect of the shoulder features of the bobbin-tool design (inscribed grooves) was replicated by the 3D-printed tools and the analogue modelling of the weld samples. Similar flow patterns were achieved by dissimilar aluminium-copper weld, validating the accuracy of the analogue plasticine for the flow visualization of the bobbin friction stir welding.
Rocznik
Strony
27--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
autor
  • University of Canterbury, Department of Mechanical Engineering, Christchurch 8041, New Zealand
Bibliografia
  • 1. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding. International patent application no. PCT/GB92 Patent application 1991.
  • 2. Murr, L.E.; Li, Y.; Trillo, E.A.; Flores, R.D.; McClure, J.C. Microstructures in friction-stir welded metals. Journal of Materials Processing and Manufacturing Science 1998, 7, 145-161.
  • 3. Li, Y.; Murr, L.E.; McClure, J.C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al. Scripta Materialia 1999, 40, 1041-1046.
  • 4. Benavides, S.; Li, Y.; Murr, L.; Brown, D.; McClure, J. Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia 1999, 41, 809-815.
  • 5. Lambiase, F.; Derazkola, H.A.; Simchi, A. Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art. Materials 2020, 13, 2291. https://doi.org/10.3390/ma13102291.
  • 6. Carlone, P.; Palazzo, G. Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy. Journal of Materials Processing Technology 2015, 215, 87-94.
  • 7. He, Z.B.; Peng, Y.Y.; Yin, Z.M.; Lei, X.F. Comparison of FSW and TIG welded joints in Al-Mg-Mn-Sc-Zr alloy plates. Transactions of Nonferrous Metals Society of China 2011, 21, 1685-1691.
  • 8. Squillace, A.; De Fenzo, A.; Giorleo, G.; Bellucci, F. A comparison between FSW and TIG welding techniques: Modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. Journal of Materials Processing Technology 2004, 152, 97-105.
  • 9. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies 2019, 7, 80.
  • 10. Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of WC-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 2020, 8, 34.
  • 11. Sued, M.K.; Pons, D.; Lavroff, J.; Wong, E.H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design 2014, 54, 632-643.
  • 12. Colligan, K.J. Low-cost friction stir welding of aluminium for littoral combat ship applications. In 8th International Friction Stir Welding Symposium, TWI: Timmendorfer Strand, Germany, 2010.
  • 13. Carstensen, J.; Dos Santos, J.F. Application of FSW and FSSW on advanced automotive structural applications. In 9th International Friction Stir Welding Symposium, Huntsville, USA, 2012.
  • 14. Bordesoules, I.; Bigot, A.; Hantrais, C.; Odievre, T.; Laye, J. Aircracts structural parts demonstrators manufactured using friction stir welding. In 9th International Symposium on Friction Stir Welding, TWI: Huntsville, USA, 2012.
  • 15. Grimm, A.; Schulze, S.; Silva, A.; Göbel, G.; Standfuss, J.; Brenner, B.; Beyer, E.; Füssel, U. Friction stir welding of light metals for industrial applications. Materials Today: Proceedings 2015, 2, S169-S178.
  • 16. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.
  • 17. Tamadon, A.; Abdali, M.; Pons, D.; Clucas, D. Characterization of dissimilar Al-Cu BFSW welds; interfacial microstructure, flow mechanism and intermetallics formation. Advances in Materials Science 2020, 20, 52-78.
  • 18. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.
  • 19. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.
  • 20. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.
  • 21. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science 2020, 20, 56-70.
  • 22. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.
  • 23. Padmanaban, G.; Balasubramanian, V. Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy–an experimental approach. Materials & Design 2009, 30, 2647-2656.
  • 24. Mohanty, H.; Mahapatra, M.; Kumar, P.; Biswas, P.; Mandal, N. Effect of tool shoulder and pin probe profiles on friction stirred aluminum welds - a comparative study. Journal of Marine Science and Application 2012, 11, 200-207.
  • 25. Xu, S.-w.; Deng, X.; Reynolds, A.P.; Seidel, T. Finite element simulation of material flow in friction stir welding. Science and Technology of Welding and Joining 2001, 6, 191-193.
  • 26. Seighalani, K.R.; Givi, M.B.; Nasiri, A.; Bahemmat, P. Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium. Journal of Materials Engineering and Performance 2010, 19, 955-962.
  • 27. Sofuoglu, H.; Rasty, J. Flow behavior of plasticine used in physical modeling of metal forming processes. Tribology International 2000, 33, 523-529.
  • 28. Wójcik, Ł.; Pater, Z. Physical analysis of cross-wedge rolling process of a stepped shaft. Advances in Science and Technology Research Journal 2017, 11.
  • 29. Wójcik, Ł.; Pater, Z.; Bulzak, T.; Tomczak, J. Physical modeling of cross wedge rolling limitations. Materials 2020, 13, 867.
  • 30. Luo, J.; Wang, H.; Chen, W.; Li, L. Study on anti-wear property of 3D printed-tools in friction stir welding by numerical and physical experiments. The International Journal of Advanced Manufacturing Technology 2015, 77, 1781-1791.
  • 31. Tamadon, A.; Pons, D.; Clucas, D. EBSD characterization of bobbin friction stir welding of AA6082-T6 aluminium alloy. Advances in Materials Science 2020, 20, 49-74.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50ffeb30-66b4-4dfd-ac18-1d61073c3051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.