PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, electrochemical properties of the as-formed and thermally treated titanium dioxide (TiO2) nanotubes with diameter in the range of 20–100 nm and height in the range of 100–1000 nm were presented. In addition, the effects of annealing temperature (450–550 °C) on the electrochemical characteristics of these structures, as well as the influence of diameter and height of TiO2 nanotubes on these properties were examined. The results were referred to a compact TiO2 layer (100 nm thick). Methods: The electrochemical test included open circuit potential, impedance spectroscopy and cyclic voltammetry measurements. The scanning electron microscope with energy dispersive spectroscopy analyser, x-ray photoelectron spectroscopy, and x-ray diffraction analysers were used for surface morphology characterisation as well as elemental, phase and chemical composition of TiO2 layers. Results: It was found that nanotubes with the diameter of 50 and 75 nm (height of 1000 nm) annealed at 550 °C exhibit the lowest impedance and phase angle values. However, the voltammetric detection of potassium ferricyanide indicated that the closest to 1 Ipc /Ipa ratio were shown by nanotubes with a diameter of 50 and 75 nm annealed at 450 °C. Conclusions: On the basis of performed analysis, it can be stated that the TiO2 layer with nanotubes of 50 nm in diameter and of 1000 nm in height, annealed in 450 °C may be indicated as the ones having the most favourable sensing and biosensing properties.
Rocznik
Strony
165--177
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] AINOUCHEA L., HAMADOUA L., KADRIA A., BENBRAHIMA N., BRADAI D., Interfacial barrier layer properties of three generations of TiO2 nanotube arrays, Electrochim. Acta, 2014, 133, 597–609.
  • [2] ARKUSZ K., KRASICKA-CYDZIK E., The effect of phosphates and fluorides included in TiO2 nanotube layers on the performance of hydrogen peroxide detection, Arch. Metall. Mater., 2018, 63, 761–768.
  • [3] ARKUSZ K., NYCZ M., PARADOWSKA E., Electrochemical Evaluation of the Compact and Nanotubular Oxide Layer Destruction under Ex Vivo Ti6Al4V ELI Transpedicular Screw Implantation, Materials, 2020, 13, 176.
  • [4] ARKUSZ K., PARADOWSKA E., NYCZ M., KRASICKA-CYDZIK E., Influence of thermal modification and morphology of TiO2 nanotubes on their electrochemical properties for biosensors applications, J. Nanosci. Nanotechnol., 2018, 18, 3713– 3721.
  • [5] BULBUL E., AKSAKAL B., Synthesizing and characterization of nano-graphene oxide-reinforced hydroxyapatite coatingson laser treated Ti6Al4V surfaces, Acta Bioeng. Biomech., 2017, 19, 171–180.
  • [6] GHICOV A., TSUCHIYA H., MACAK J.M., SCHMUKI P., Annealing effects on the photoresponse of TiO2 nanotubes, Phys. Stat. Sol. A, 2006, 203, 28–30.
  • [7] GOODARZI S., MOZTARZADEH F., NEZAFATI N., OMIDVAR H., Titanium dioxide nanotube arrays: A novel approach into periodontal tissue regeneration on the surface of titanium implants, Adv. Mater. Lett., 2016, 7, 209–215.
  • [8] JAROSZ M., PAWLIK A., SZUWARZYŃSKI M., JASKUŁA M., SULKA G.D., Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism, Coll. Surf. B. Biointer., 2016, 143, 447– 454.
  • [9] JE-HWANG R., GI-JA L., WAN-SUN K., HAN-EOL L., MALLORY M., KYU-CHANG P. et al., All-carbon electrode consisting of carbon nanotubes on graphite foil for flexible electrochemical applications, Materials, 2014, 7, 1975– 1983.
  • [10] KRASICKA-CYDZIK E., ARKUSZ K., KACZMAREK-PAWELSKA A., A mathematical model for selection of formation parameters of TiO2 nanotube by anodizing, Eng. Biomat., 2012, 15, 34–40.
  • [11] LI D.G., CHEN D.R., WANG J.D., LIANG P., Effect of acid solution fluoride ions anodic potential and time on the microstructure and electronic properties of self-ordered TiO2 nanotube arrays, Electrochim. Acta, 2016, 207, 152–163.
  • [12] MACAK J.M., TSUCHIYA H., GHICOV A., YASUDA K., HAHN R., BAUER S. et al., TiO2 nanotubes: Self-organized electrochemical formation properties and applications, Curr. Opin. Solid State M., 2007, 11, 3–18.
  • [13] MAZAREA A., TOTEAB G., BURNEIC C., SCHMUKI P., DEMETRESCUD I., IONITAD D., Corrosion antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature, Corros. Sci., 2016, 103, 215–222.
  • [14] MUNIRATHINAM B., NEELAKANTAN L., Titania nanotubes from weak organic acid electrolyte: Fabrication characterization and oxide film properties, Mat. Sci. Eng. C-Mater., 2015, 49, 567–578.
  • [15] MUÑOZ A.G., Semiconducting properties of self-organized TiO2 nanotubes, Electrochim. Acta, 2017, 52, 4167–4176.
  • [16] NYCZ M., ARKUSZ K., PIJANOWSKA D.G., Influence of the silver nanoparticles (AgNPs) formation conditions onto titanium dioxide (TiO2) Nanotubes based electrodes on their impedimetric response, Nanomaterials, 2019, 9, 1072.
  • [17] NYCZ M., PARADOWSKA E., ARKUSZ K., KUDLIŃSKI B., KRASICKA-CYDZIK E., Surface analysis of long-term hemodialysis catheters made of carbothane (Poly(carbonate)urethane) before and after implantation in the patients’ bodies, Acta Bioeng. Biomech., 2018, 20, 47–53.
  • [18] PARADOWSKA E., ARKUSZ K., PIJANOWSKA D.G., The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption, Biosensors, 2019, 9 (4), 138.
  • [19] SALARI M., KONSTANTINOV K., LIU H.K., Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies, J. Mater. Chem., 2011, 21, 5128–5133.
  • [20] STILLER M., ESQUINAZI P., SO S., HWANG I., SCHMUKI P., BÖTTNER J. et al., Electrical transport properties of polycrystalline and amorphous TiO2 single nanotubes, Nano- -Structures and Nano-Objects, 2017, 10, 51–56.
  • [21] WANG J., LIN Z., Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential, J. Phys. Chem. C, 2009, 113, 4026–4030.
  • [22] WANG Y., LIU S., HUANG K., FANG D., ZHUANG S., Electrochemical properties of freestanding TiO2 nanotube membranes annealed in Ar for lithium anode material, J. Solid. State. Electr., 2012, 16, 723–729.
  • [23] YAN Y., WU L., GUO Q., HUANG S., A novel catechol electrochemical sensor based on cobalt hexacyanoferrate/ (CoHCF)/Au/SBA-15, J. Anal. Bioanal. Tech., 2015, 6, 290.
  • [24] YEW R., KARUTURI S.K., LIU J., TAN H.H., WU Y., JAGADISH C., Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting, Opt. Express, 2019, 27, 761–773.
  • [25] YU W., QIU J., XU L., ZHANG F., Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution, Biomed. Mater., 2009, 4, 065012.
  • [26] ZHU K., NEALE N.R., HALVERSON A.F., KIM J.Y., FRANK A.J., Effects of annealing temperature on the charge-collection and light-harvesting properties of TiO2 nanotube-based dye-sensitized solar cells, J. Phys. Chem. C, 2010, 114, 13433–13441.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50fdac57-3a81-4bde-961f-7219c3577a5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.