PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insights into U-NET models with special focus on ultrasound and MRI medical image segmentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advent of deep learning enabled the extraction of complex feature representations from medical imaging data, which was considered impossible to be achieved with standard computer learning. The applications of deep learning in the field of medical image analysis afford significant results. A key feature of deep learn- ing techniques is their ability to automatically learn task-specific feature representations and extract relevant features without hu- man intervention. Various deep learning models, including CNN, AlexNet, ResNet, DenseNet and U-Net were developed for medical image analysis. Among these models, U-Net is a popular model, used for medical image segmentation. The present article provides a comprehensive review of the deep learning segmentation models, which use U-Net and its variants, applied in the domain of medical image segmentation, specifically tailored to medical imaging modal- ities, such as ultrasound and MRI, along with respective pros and cons in the field of image segmentation. The analysis reveals that the performance of different U-Net variants varies significantly based on imaging modality and segmentation complexity.
Słowa kluczowe
Rocznik
Strony
79--117
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • MES College Nedumkandam, Chembalam PO, Idukki District, Kerala-685 553, India
autor
  • MES College Nedumkandam, Chembalam PO, Idukki District, Kerala-685 553, India
Bibliografia
  • Ahmad, H. A., Yu, H. J. and Miller, C. G. (2013) Medical Imaging Modalities. Medical Imaging in Clinical Trials, 3–26. https://doi.org/10.1007/978-1-84882-710-3 1
  • Altaf, F., Islam, S. M. S., Akhtar, N. and Janjua, N. K. (2019) Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions. IEEE Access, 7, 99540–99572
  • Carton, F., Chabanas, M., Lann, F. L. and Noble, J. H. (2020) Automatic segmentation of brain tumor resections in intraoperative ultrasound images using U-Net. Journal of Medical Imaging, 7(03), 1. https://doi.org/10.1117/1.jmi.7.3.031503
  • Chahal, E. S., Patel, A., Gupta, A., Purwar, A. and Dhanalekshmi, G. (2021) U-Net based Xception Model for Prostate Cancer Segmentation from MRI Images. Multimedia Tools and Applications, 81(26), 37333–37349. https://doi.org/10.1007/s11042-021-11334-9.
  • Chen, G., Li, L., Zhang, J. and Dai, Y. (2023a) Rethinking the unpretentious U-Net for Medical Ultrasound Image Segmentation. Pattern Recognition, 142, 109728–109728. https://doi.org/10.1016/j.patcog.2023.109728.
  • Chen, G., Li, L., Dai, Y., Zhang, J. and Yap, M. H. (2023b) AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images. IEEE Transactions on Medical Imaging, 42(5), 1289–1300. https://doi.org/10.1109/tmi.2022.3226268
  • Cicek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T. and Ronneberger, O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Lecture Notes in Computer Science, 9901, 424–432). Springer, Cham.
  • Du, G. et al. (2020) Medical Image Segmentation based on U-Net: A Review. Journal of Imaging Science and Technology, 64(2). 020508–020512 Available at: https://doi.org/10.2352/j.imagingsci.technol.2020.64.2.020508.
  • Ezugwu, A. E., Shukla, A. K., Agbaje, M. B., Oyelade, O. N., José-Garc´ıa, A. and Agushaka, J. O. (2020) Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Computing and Applications, 33(11), 6247–6306. https://doi.org/10.1007/s00521-020-05395-4
  • Gao, Q.-h. and Almekkawy, M. (2021) ASU-Net++: A Nested U-Net with Adaptive Feature Extractions for Liver Tumor Segmentation. Computers in Biology and Medicine, 136, 2021, 104688, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2021.104688.
  • He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognition (CVPR), Jun. 2016, 770-778.
  • Hesamian, M. H. et al. (2019) Deep learning techniques for Medical Image Segmentation: Achievements and Challenges. Journal of Digital Imaging, 32(4), 582–596. Available at: https://doi.org/10.1007/s10278-019-00227-x.
  • Houssein, E. H., El-din Helmy, B., Oliva, D., Elngar, A.A. and Shaban, H. (2021) Multi-level Thresholding Image Segmentation Based on Nature-Inspired Optimization Algorithms: A Comprehensive Review. In: D. Oliva, E. H. Houssein and S. Hinojosa (eds.), Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, 967, 239–265, Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8 11
  • Hussein, A., Youssef, S., Ahmed, M. A. and Ghatwary, N. (2025) MGB-Unet: An Improved Multiscale U-Net with Bottleneck Transformer for Myositis Segmentation from Ultrasound Images. Journal of Imaging Informatics in Medicine, 38, 217–228. https://doi.org/10.1007/s10278-024-01168-w
  • Islam, M. R., Rahman, M. M., Ali, M. S., Nafi, A. a. N., Alam, M. S., Godder, T. K., Miah, M. S. and Islam, M. K. (2024) Enhancing breast cancer segmentation and classification: An Ensemble Deep Convolutional Neural Network and U-Net Approach on Ultrasound Images. Machine Learning with Applications, 16, 100555. https://doi.org/10.1016/j.mlwa.2024.100555
  • Khaled, R., Vidal, J., Vilanova, J. C. and Mart´ı, R. (2022) A U-Net Ensemble for Breast Lesion Segmentation in DCE MRI. Computers in Biology and Medicine, 140, 105093. https://doi.org/10.1016/j.compbiomed.2021.105093
  • Kumar, S. N., Lenin, F., Muthukumar, S, Kumar, A. and Varghese, S. (2018a) A Voyage on Medical image Segmentation Algorithms. Biomedical Research, Special Issue: S75-S87.
  • Kumar, S. N., Lenin, F. A., Ajay Kumar, H. and Varghese, P. S. (2018b) Performance Metric Evaluation of Segmentation Algorithms for Gold Standard Medical Images. In: P. K. Sa et al. (eds.), Recent Findings in Intelligent Computing Techniques. Advances in Intelligent Systems and Computing, 709. Springer Nature Singapore, 457–469. https://doi.org/10.1007/978-981-10-8633-5 45
  • Lakshmi, K., Amaran, S., Subbulakshmi, G., Padmini, S., Joshi, G. P. and Cho, W. (2025) Explainable Artificial Intelligence with U-Net Based Segmentation and Bayesian Machine Learning for Classification of Brain Tumors usingMRI Images. Scientific Reports, 15(1), 690. https://doi.org/10.1038/s41598-024-84692-7
  • Li, J., Feng, C., Shen, Q., Lin, X. and Qian, X. (2022) Pancreatic cancer segmentation in unregistered multi-parametric MRI with adversarial learning and multi-scale supervision. Neurocomputing, 467, 310–322 https://doi.org/10.1016/j.neucom.2021.09.058
  • Mubashar, M., Ali, H., Gr¨onlund, C. et al. (2022) R2U++: a multiscale recurrent residual U-Net with dense skip connections for Medical Image Segmentation. Neural Computing & Applications 34, 17723–17739. https://doi.org/10.1007/s00521-022-07419-7
  • Nizamani, A. H., Chen, Z., Nizamani, A. A. and Bhatti, U. A. (2023) Advanced brain tumor segmentation using feature fusion methods with deep U-Net model with CNN for MRI data. Journal of King Saud University - Computer and Information Sciences, 35(9), 101793-101806. https://doi.org/10.1016/j.jksuci.2023.101793
  • Oh, S. H., Kim, Y., Park, Y. and Kim, K. G. (2021) Automatic pancreatic cyst lesion segmentation on EUS images using a Deep-Learning approach. Sensors, 22(1), 245. https://doi.org/10.3390/s22010245
  • Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N. Y., Kainz, B., Glocker, B. and Rueckert, D. (2018) Attention U-Net: Learning where to look for the pancreas, arXiv:1804.03999. [Online]. Available: http://arxiv.org/abs/1804.03999
  • Prasad, P. J. R., Elle, O. J., Lindseth, F., Albregtsen, F. and Kumar, R. P. (2021) Modifying U-Net for small data set: a simplified U-Net version for liver parenchyma segmentation. In: Proceedings of the SPIE 11597, Medical Imaging 2021: Computer Aided Diagnosis. SPIE Proceedings, 11597, Article 115971O. Society of Photo-Optical Instrumentation Engineers (SPIE). https://doi.org/10.1117/12.2582179
  • Priyadharsini, R. and Sharmila, T.S. (2019) Object detection in underwater acoustic images using edge based segmentation method. Procedia Computer Science, 165, 759–765. Available at: https://doi.org/10.1016/j.procs.2020.01.015.
  • Punn, N. S. and Agarwal, S. (2022) Modality Specific U-Net Variants for Biomedical Image Segmentation: a survey. Artificial Intelligence Review, 55(7), 5845–5889. https://doi.org/10.1007/s10462-022-10152-1
  • Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: N. Navab, J. Hornegger, W. M. Wells and A. F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, 9351, 234–241. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4 28
  • Sangui, S., Iqbal, T., Chandra, P. C., Ghosh, S. K. and Ghosh, A. (2023) 3DMRI Segmentation using U-Net Architecture for the detection of Brain Tumor. Procedia Computer Science, 218, 542–553. https://doi.org/10.1016/j.procs.2023.01.036
  • Siddique, N., Paheding, S., Elkin, C. P. and Devabhaktuni, V. (2021) U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access, 9, 82031-82057, 2021, doi: 10.1109/ACCESS.2021.3086020.
  • Sridhar, B. (2020) A Quality Representation of Tumor in Breast Using Hybrid Model Watershed Transform and Markov Random Fields. In: 2020 International Conference on Computer Communication and Informatics (ICCCI), 1–5. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/iccci48352.2020.9104154
  • Wang, X., Chang, Z., Zhang, Q., Li, C., Miao, F. and Gao, G. (2023) Prostate ultrasound image segmentation based on DSU-Net. Biomedicines, 11(3), 646. https://doi.org/10.3390/biomedicines11030646
  • Wang, Z., Liu, Z., Song, Y. and Zhu, Y. (2019) Densely connected deep U-Net for abdominal multi-organ segmentation. In: 2022 IEEE International Conference on Image Processing (ICIP), 1415–1419, https://doi.org/10.1109/icip.2019.8803103
  • Wang, W., Yu, K., Hugonot, J., Fua, P. and Salzmann, M. (2019) Recurrent U-Net for Resource-Constrained Segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2142–2151. IEEE. https://doi.org/10.1109/iccv.2019.00223
  • Wang, R., Zhou, H., Fu, P., Shen, H. and Bai, Y. (2023) AMultiscale Attentional Unet Model for Automatic Segmentation in Medical Ultrasound Images. Ultrasonic Imaging, 45(4), 159–174. https://doi.org/10.1177/01617346231169789
  • Yang, Z., Sun, X., Yang, Y. and Wu, X. (2024) MEDU-Net+: A Novel Improved U-Net Based on Multi-Scale Encoder-Decoder for Medical Image Segmentation. KSII Transactions on Internet and Information Systems, 18(7), 1706-1725 https://doi.org/10.3837/tiis.2024.07.001
  • Yu, H., He, F. and Pan, Y. (2019) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimedia Tools and Applications, 79(9-10), 5743–5765. Available at: https://doi.org/10.1007/s11042-019-08493-1
  • Zhang, J., Lv, X., Zhang, H. and Liu, X. (2020) Aresu-net: Attention Residual U-Net for brain tumor segmentation. Symmetry, 12(5), 721. https://doi.org/10.3390/sym12050721
  • Zhang, Z., Wu, C., Coleman, S. and Kerr, D. (2020) DENSE-Inception U-Net for Medical Image Segmentation. Computer Methods and Programs in Biomedicine, 192, 105395. https://doi.org/10.1016/j.cmpb.2020.105395
  • Zhou, T., Ruan, S. and Canu, S. (2020) A Review: Deep learning for Medical Image Segmentation using Multi-modality Fusion. Array, 3–4, 100004. https://doi.org/10.1016/j.array.2019.100004
  • Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. and Liang, J. (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support 4th International Workshop on DLMIA 2018 and 8th International Workshop on ML-CDS 2018, held in Conjunction with MICCAI 2018. Lecture Notes in Computer Science, 11045, 3–11. Springer, Cham. https://doi.org/10.1007/978-3-030-00889-5 1
  • Zhou, Z., Siddiquee, M. R., Tajbakhsh, N. and Liang, J. (2020) U-NET++: Redesigning Skip Connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 39(6), 1856–1867. https://doi.org/10.1109/tmi.2019.2959609
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50fa69cb-648d-48c4-acab-f1fc67fb34b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.