PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biofuels as fuels for high temperature fuel cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on mathematical modeling and numerical simulations, influences of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both SOFC and MCFC have been done and described. Performances of these fuel cells with dierent biofuels are shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from system performance point of view are pointed out. An analysis of various biofuels as fuels for Solid Oxide Fuel Cell (SOFC) and Molten Carbonate Fuel Cell (MCFC) is presented. The results are compared with Natural Gas (NG) as a reference fuel. The biofuels are characterized by both lower eciency and lower fuel utilization factors in comparison with NG. The presented results are based on a 0D mathematical model in design point calculation. The governing equations of the model are presented.
Rocznik
Strony
347--353
Opis fizyczny
Bibliogr. 29 poz., tab., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Poland
  • Warsaw University of Technology, Institute of Heat Engineering, Poland
Bibliografia
  • [1] Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine, Rynek Energii 100 (3) (2012) 56–62.
  • [2] K. Janusz-Szymańska, Economic effciency of an igcc system integreted with ccs installation [efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacją CCS], Rynek Energii 102 (5) (2012) 24–30.
  • [3] M. Kawabata, O. Kurata, N. Iki, C. Fushimi, A. Tsutsumi, Analysis of igfc with exergy recuperation and carbon dioxide separation unit, Vol. 3, 2012, pp. 441-448.
  • [4] M. Kawabata, O. Kurata, N. Iki, A. Tsutsumi, H. Furutani, Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation-technical challenges for future generations, Journal of Power Technologies 2 (2012) 90–100.
  • [5] G. De Lorenzo, P. Fragiacomo, Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Research 36 (2) (2012) 153–165.
  • [6] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems, International Journal of Energy Research 36 (1) (2012) 96–110.
  • [7] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.
  • [8] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm, International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.
  • [9] P. Pianko-Oprych, Z. Jaworski, Numerical modelling of the micro-tubular solid oxide fuel cell stacks [przegląd metod modelowania numerycznego mikrorurowych stałotlenkowych stosów ogniw paliwowych], Przemysł Chemiczny 91 (9) (2012) 1813–1815.
  • [10] J. Milewski, A. Miller, Mathematical model of SOFC (Solid Oxide Fuel Cell) for power plant simulations, in: ASME Turbo Expo, Vol. 7, 2004, pp. 495–501.
  • [11] J. Milewski, Mathematical model of SOFC for complex fuel compositions, in: International Colloquium on Environmentally Preferred Advanced Power Generation, no. ICEPAG2010-3422, 2010.
  • [12] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9 (2012) 372–384.
  • [13] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37 (15) (2012) 11394–11400.
  • [14] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a coal fired power plant by using a molten carbonate fuel cell, in: Proceedings of the ASME Turbo Expo, Vol. 2, 2008, pp. 389–395.
  • [15] G. Marban, T. Valdes-Solis, Towards the hydrogen economy?, International Journal of Hydrogen Energy 32 (2007) 1625–1637.
  • [16] W. Budzianowski, Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs, Renewable and Sustainable Energy Reviews 16 (9) (2012) 6507–6521.
  • [17] A. Sobolewski, . Bartela, A. Skorek-Osikowska, T. Iluk, Comparison of the economic effciency of chp plants integrated with gazela generator [porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego gazela], Rynek Energii 102 (5) (2012) 31–37.
  • [18] D. J. Brett, A. Atkinson, D. Cumming, E. Ramirez- Cabrera, R. Rudkin, N. P. Brandon, Methanol as a direct fuel in intermediate temperature (500–600c) solid oxide fuel cells with copper based anodes, Chemical Engineering Science 60 (21) (2005) 5649–5662.
  • [19] R. J. Kee, H. Zhu, D. G. Goodwin, Solid-oxide fuel cells with hydrocarbon fuels, Proceedings of the Combustion Institute 30 (2) (2005) 2379–2404.
  • [20] L. Fryda, K. Panopoulos, E. Kakaras, Integrated chp with autothermal biomass gasification and sofc-mgt, Energy Conversion and Management 49 (2) (2008) 281–290.
  • [21] J. V. Herle, F. Marchal, S. Leuenberger, Y. Membrez, O. Bucheli, D. Favrat, Process flow model of solid oxide fuel cell system supplied with sewage biogas, Journal of Power Sources 131 (1-2) (2004) 127-141.
  • [22] S. Assabumrungrat, N. Laosiripojana, V. Pavarajarn, W. Sangtongkitcharoen, A. Tangjitmatee, P. Praserthdam, Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol, Journal of Power Sources 139 (1–2) (2005) 55–60.
  • [23] G. Rabenstein, V. Hacker, Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis, Journal of Power Sources 185 (2) (2008) 1293-1304.
  • [24] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37 (3) (2012) 2498–2508.
  • [25] D. A. Brunner, S. Marcks, M. Bajpai, A. K. Prasad, S. G. Advani, Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications, International Journal of Hydrogen Energy 37 (5) (2012) 4457-4466.
  • [26] J. Milewski, K. Świrski, M. Santarelli, P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1st Edition, Springer-Verlag London Ltd., 2011.
  • [27] J. Milewski, M. Wołowicz, A. Miller, R. Bernat, A reduced order model of molten carbonate fuel cell: A proposal, International Journal of Hydrogen Energy in press.
  • [28] H. Corporation, HYSYS.Plant 2.1 User guide (1996).
  • [29] J. Milewski, The influence of fuel composition on Solid Oxide Fuel Cell obtained by using the advanced mathematical model, Journal of Power Technologies 91 (4) (2011) 179–185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50f4876e-5c8f-461a-80ac-c8e0ae7dcd91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.