PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mix design determination procedure for geopolymer concrete based on target strength method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the development and validation of a mix design determination procedure for geopolymer concrete to achieve the desired compressive strength. The procedure integrates artificial neural network (ANN) model developed based on a comprehensive data base from literature, data clustering, and parameter optimization techniques to enhance accuracy and reliability. Experimental validation is undertaken to demonstrate the mix design determination procedure’s capability to accurately predict mix designs for geopolymer concrete based on the target compressive strength, validating its efficacy for mix proportion determination. The integration of chemical oxide content in fly ash, curing time, curing temperature, and activator properties results in a 15.9% improvement in prediction accuracy for the training dataset and a 68.3% enhancement for the testing dataset, compared to the base ANN model that includes only the weight of fly ash and activator properties. Employing data clustering techniques enables the identification of prior estimates for the mix design parameters related to specific fly ash types and target compressive strength, streamlining the mix design process by analyzing pertinent data subsets. Parameter optimization ensures refined mix proportions, achieving the desired target strength economically while minimizing material waste and cost. The development of a user interface facilitates easy manipulation of mix designs, catering to users of varying expertise levels. Additional options for deeper insights into geopolymer concrete characteristics can be integrated into the mix design determination procedure. To assess the mix design determination procedure's ability to generalize effectively, a variety of fly ash samples with distinct chemical compositions were utilized, differing from those already present in the database. This approach allows for a thorough evaluation of the mix design determination procedure's performance when presented with fly ash compositions it has not encountered before. By doing so, this provides insights into the adaptability of the mix design determination procedure beyond the limitations of the training and testing datasets.
Rocznik
Strony
art. no. e192, 2024
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • School of Engineering, RMIT University, Melbourne, Australia
  • Department of Engineering Mathematics, University of Peradeniya, Peradeniya, Sri Lanka
  • School of Engineering, RMIT University, Melbourne, Australia
autor
  • School of Engineering, RMIT University, Melbourne, Australia
  • Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
autor
  • School of Engineering, University of Southern Queensland, Toowoomba, Australia
Bibliografia
  • 1. Ahmed HQ, Jaf DK, Yaseen SA. Comparison of the flexural performance and behaviour of fly-ash-based geopolymer concrete beams reinforced with CFRP and GFRP bars. Adv Mater Sci Eng. 2020;2020:1–15.
  • 2. Gunasekara C, Zhou Z, Law DW, Sofi M, Setunge S, MendisP. Microstructure and strength development of quaternary blendhigh-volume fly ash concrete. J Mater Sci. 2020;55(15):6441–56.https://doi.org/10.1007/s10853-020-04473-1.
  • 3. Patrisia Y, Law D, Gunasekara C, Wardhono A. "The role ofNa2O dosage in iron-rich fly ash geopolymer mortar. Arch Civil Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00509-2.
  • 4. Nguyen KT, Nguyen QD, Le TA, Shin J, Lee K. Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches. Constr Build Mater. 2020;247:118581.
  • 5. Mehta A, Siddique R, Ozbakkaloglu T, Shaikh FUA, Belarbi R. Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: mechanical, transport and microstructural properties. Constr Build Mater. 2020;257:119548.
  • 6. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78–90. https:// doi. org/ 10. 1016/j. conbu ildmat.2015.03.036.
  • 7. Talha Junaid M, Kayali O, Khennane A, Black J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr Build Mater. 2015;79:301–10. https://doi.org/10.1016/j.conbuildmat.2015.01.048.
  • 8. Rai B, Roy LB, Rajjak M. A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete. Struct Concr. 2018;19(5):1268–79. https://doi.org/10.1002/suco.201700193.
  • 9. Luan C, et al. A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2020.121612.
  • 10. Adesanya E, Aladejare A, Adediran A, Lawal A, Illikainen M. Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement Concr Compos. 2021;124:104265.
  • 11. Olivia M, Nikraz H. Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des (1980–2015).2012;36:191–8.
  • 12. Bhogayata A, Kakadiya S, Makwana R. Neural network for mixture design optimization of geopolymer concrete. ACI Mater J.2021. https://doi.org/10.14359/51732711.
  • 13. Dao DV, Ly HB, Trinh SH, Le TT, Pham BT. Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials (Basel). 2019. https://doi.org/10.3390/ma12060983.
  • 14. Kishore YSN, Nadimpalli SGD, Potnuru AK, Vemuri J, Khan MA. Statistical analysis of sustainable geopolymer concrete. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.08.129.
  • 15. Junaid MT, Kayali O, Khennane A, Black J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr Build Mater. 2015;79:301–10.
  • 16. Lokuge W, Wilson A, Gunasekara C, Law DW, Setunge S. Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Constr Build Mater. 2018;166:472–81.
  • 17. Hadi MN, Al-Azzawi M, Yu T. Effects of fly ash characteristics and alkaline activator components on compressive strengthof fly ash-based geopolymer mortar. Constr Build Mater.2018;175:41–54.
  • 18. Gunasekara C. Influence of properties of fly ash from different sources on the mix design and performance of geopolymer concrete. RMIT University. 2022. Accessed 8 Aug 2022.
  • 19. Li Y, Shen J, Lin H, Li Y. Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission. J Build Eng. 2023;75:106929.
  • 20. Rathnayaka M, Karunasinghe D, Gunasekara C, Wijesundara K, Lokuge W, Law DW. Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: acomprehensive review. Constr Build Mater. 2024;419:135519.
  • 21. Ali Khan M, Zafar A, Akbar A, Javed MF, Mosavi A. Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete. Materials (Basel). 2021. https://doi.org/10.3390/ma14051106.
  • 22. Gunasekara C, Atzarakis P, Lokuge W, Law DW, Setunge S. Novel analytical method for mix design and performance prediction of high calcium fly ash geopolymer concrete. Polymers (Basel). 2021. https://doi.org/10.3390/polym13060900.
  • 23. Yang W, Wang K, Zuo W. Neighborhood component feature selection for high-dimensional data. J Comput. 2012;7(1):161–8.
  • 24. Gomaa E, Han T, ElGawady M, Huang J, Kumar A. Machine learning to predict properties of fresh and hardened alkali-activated concrete. Cement Concr Compos. 2021. https://doi.org/10.1016/j.cemconcomp.2020.103863.
  • 25. Thanh Pham T. A neural network approach for predicting hardened property of geopolymer concrete. Int J Geomate. 2020;19(74):176–84. https://doi.org/10.21660/2020.74.72565.
  • 26. Peng Y, Unluer C. "Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques. Constr Build Mater. 2022. https://doi.org/10.1016/j.conbuildmat.2021.125785.
  • 27. Huynh AT, et al. A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl Sci. 2020. https://doi.org/10.3390/app10217726.
  • 28. Liu J-C, Zhang Z. A machine learning approach to predict explosive spalling of heated concrete. Arch Civil Mech Eng. 2020.https://doi.org/10.1007/s43452-020-00135-w.
  • 29. Neville AM. Properties of concrete. Longman London; 1995.
  • 30. Hardjito D, Rangan BV. Development and properties of low-calcium fly ash-based geopolymer concrete. Australia: Curtin University of Technology Perth; 2005.
  • 31. Joseph B, Mathew G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci Iran.2012;19(5):1188–94.
  • 32. Kusbiantoro A, Nuruddin MF, Shafiq N, Qazi SA. The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete. Constr Build Mater. 2012;36:695–703.
  • 33. Sumajouw M and Rangan, BV. Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns; 2006.
  • 34. Shi X, Collins FG, Zhao XL, Wang Q. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete. J Hazard Mater. 2012;237:20–9.
  • 35. Law DW, Adam AA, Molyneaux TK, Patnaikuni I, Wardhono A. Long term durability properties of class F fly ash geopolymer concrete. Mater Struct. 2015;48(3):721–31.
  • 36. Shaikh FUA. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int JSustain Built Environ. 2016;5(2):277–87.
  • 37. Junaid MT, Khennane A, Kayali O. Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures. Mater Struct. 2015;48(10):3357–65.
  • 38. Olivia M, Sarker P and Nikraz, H. water penetrability of low calcium fly ash geopolymer concrete; 2008.
  • 39. Pavithra P, Reddy MS, Dinakar P, Rao BH, Satpathy B, Mohanty A. A mix design procedure for geopolymer concrete with fly ash. J Clean Prod. 2016;133:117–25.
  • 40. Shaikh F, Vimonsatit V. Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire Mater.2015;39(2):174–88.
  • 41. Nuruddin MF, Demie S, Shafiq N. Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete. Can J Civ Eng. 2011;38(11):1196–203.
  • 42. Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME. Effectof nanosilica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int.2018;44(11):12253–64.
  • 43. Gunasekara C, Law D, Bhuiyan S, Setunge S, Ward L. Chloride induced corrosion in different fly ash based geopolymer concretes. Constr Build Mater. 2019;200:502–13.
  • 44. Olivia M, Nikraz H. Corrosion performance of embedded steel in fly ash geopolymer concrete by impressed voltage method. CRC Press; 2011.
  • 45. Cheema, DS and Lloyd N. Low calcium fly ash geopolymer concrete sustainability and durability potential. In First International Conference on concrete Sustainability; 2013.
  • 46. Olivia M and Nikraz H. Optimization of fly ash geopolymer concrete mixtures in a seawater environment. In: Proceedings of the24th Biennial Conference of the Concrete Institute Australia, Concrete Institute of Australia; 2009.
  • 47. Olivia M, Nikraz HR. Strength and water penetrability of fly ash geopolymer concrete. Parameters. 2006;1(2):3.
  • 48. Olivia M, Nikraz H. Durability of low calcium fly ash geopolymer concrete in chloride solution; 2009.
  • 49. Gunasekara C, Law DW, Setunge S. Long term permeation properties of different fly ash geopolymer concretes. Constr BuildMater. 2016;124:352–62.
  • 50. Okoye F, Durgaprasad J, Singh N. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int. 2016;42(2):3000–6.
  • 51. Hongen Z, Feng J, Qingyuan W, Ling T, Xiaoshuang S. Influence of cement on properties of fly-ash-based concrete. ACI Mater J.2017. https://doi.org/10.14359/51700793.
  • 52. Kurtoglu AE, et al. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv Concr Constr. 2018;6(4):345.
  • 53. Abbas W, Khalil W, Nasser I. Production of light weight Geopolymer concrete using artificial local light weight aggregate. MATEC Web Conf. 2018;162:02024.
  • 54. Ramujee K, Potharaju M. Mechanical properties of geopolymer concrete composites. Mater Today Proc. 2017;4(2):2937–45.
  • 55. Farhan NA, Sheikh MN, Hadi MN. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater. 2019;196:26–42.
  • 56. Wardhono A, Gunasekara C, Law DW, Setunge S. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr Build Mater. 2017;143:272–9.
  • 57. Arun B, Nagaraja P, Srishaila J. An effect of NaOH molarity on fly ash-Metakaolin-based self-compacting geopolymer concrete. In: Das BB, Neithalath N, editors. Sustainable construction andbuilding materials. Singapore: Springer; 2019. p. 233–44.
  • 58. Zhang H, et al. Investigating various factors affecting the long-term compressive strength of heat-cured fly ash geopolymer concrete and the use of orthogonal experimental design method. IntJ Concr Struct Mater. 2019;13(1):1–18.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50f39513-a11f-4d2b-8f85-3cd1d75c693f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.