PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Surface Roughness on the High Temperature / High Strain Low Cycle Fatigue Behavior of Nickel-Based Superalloy Rene®80

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since fatigue cracks nucleate and initiate generally at the surface of the rotary components such as blades and discs, the surface condition is the most important factor affecting the fatigue life. Surface scratches are suitable sites for stress concentrations and therefore the nucleation stage of fatigue cracks will be shortened. In the present work, the influence of surface roughness on the low cycle fatigue life behavior of nickel-based superalloy Rene®80 at the temperature of 900°C was evaluated. Results of low cycle fatigue tests (LCF) under strain-controlled condition at 900°C for R = εminmax = 0 and strain rate of 2×10-3 s-1, at a total strain range of 1.2% showed an inverse relationship between fatigue strength and surface roughness of the specimens. In this study, increasing the surface roughness of Rene®80 from 0.2 μm to 5.4 μm led to the decline in the final LCF life from 127 cycles to 53 cycles which indicated a 58.3% reduction in fatigue life at the same condition. Fractography evaluation also exhibited that fatigue cracks initiated from the notch in the rough specimens, whereas in the smooth specimen fatigue cracks nucleated from the internal imperfections and carbides.
Twórcy
  • Malek Ashtar University of Technology (MUT), Faculty of Material and Manufacturing Technologies, Tehran 15875-1774, Iran
Bibliografia
  • [1] M.M. Barjesteh, S.M. Abbasi, K. Zangeneh-Madar, K. Shirvani, Mater. Chem. and Phys. 227, 46-55 (2019).
  • [2] S. Zhang, D. Zhao, Aerospace Materials Handbook, CRC Press Taylor & Francis Group 2013.
  • [3] M.M. Barjesteh, K. Zangeneh-Madar, S.M. Abbasi, K. Shirvani, J. Min. Metall. B. 55 (2), 235-251 (2019).
  • [4] Q. Huang, J. X. Ren, Int. J. Fatigue. 13 (4), 322-326 (1991).
  • [5] P. Zhang, Q. Zhu, G. Chen, H. Qin, C. Materials 8, 6179-6194 (2015).
  • [6] H. Buhl (1st Ed.), Advanced Aerospace Materials, Springer-Verlag Berlin 1992.
  • [7] J. Schijve, Fatigue of Structures and Materials, Kluwer Academic Publishers 2004.
  • [8] I.S. Kim, B.G. Choi, J.E. Jung, J. Do, C.Y. Jo, Mater. Charact. 106, 375-381 (2015).
  • [9] N. Fujimura, T. Nakamura, H. Oguma, J. Solid Mech. Mater. Eng. 7 (3), 372-380 (2013).
  • [10] W.L. Xiao, H.B. Chen, Y. Yin, Key Eng. Mater. 525-526, 417-420 (2013).
  • [11] Y. Wang, E.I. Meletis, H. Huang, Int. J. Fatigue. 48, 280-288 (2013).
  • [12] L. Tan, C. Yao, D. Zhang, J. Ren, Z. Zhou, J. Zhang, Int. J. Fatigue. 136, 105630 (2020).
  • [13] Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang, Acta Metall. Sin. (Engl. Lett.). 30 (7), 630-640 (2017).
  • [14] J. Peguesa, M. Roach. R.S. Williamson. N. Shamsaei, Int. J. Fatigue. 116, 543-552 (2018).
  • [15] A. Cox, S. Herbert, J.-P. Villain-Chastre, S. Turner, M. Jackson, Int. J. Fatigue. 124, 26-33 (2019).
  • [16] T. Gao 1, Z. Sun, H. Xue, E. Bayraktar, Z. Qin, B. Li, H. Zhang, Metals. 10, 1507-1522 (2020).
  • [17] H. Javadi, W. Jomaa, D. Texier, M. Brochu, P. Bocher, Solid State Phenom. 258, 306-309 (2017).
  • [18] X. Ren, Z. Liu, X. Liang, P. Cui, Materials, 14, 2428-2444 (2021).
  • [19] D.T. Ardi, Y.G. Li, K.H.K. Chan, M.R. Bache, J. Mater. Eng. Perform. 23 (10), 3657-3665 (2014).
  • [20] J. Safari, S. Nategh, J. Mater. Process Technol. 176, 240-250 (2006).
  • [21] GE Aircraft Engines specification, C50TF28, USA 1996.
  • [22] B. Chmiela, B. Koscielniak, J. Cwajna, Arch. Metall. Mater. 62 (1), 241-245 (2017).
  • [23] A. R. Rosenfield, ASM International, Fracture Mechanics in Failure Analysis section, Fatigue and Fracture, Volume 19, Materials Park 1996.
  • [24] F.C. Campbell, Fatigue and Fracture: Understanding the Basics, Materials Park 2012.
  • [25] P. R. Bhowal1, D. Stolz, A. M. Wusatowska-Sarnek, R. Montero, Superalloys, 417-423 (2008).
  • [26] K. Rahmani, S. Nategh, Mater. Sci. Eng. A. 494 (1), 385-390 (2008).
  • [27] D.K. Das, Prog. Mater. Sci. 58, 151-182 (2013).
  • [28] H. Pei, Z. Wen, Z. Li, Y. Zhang, Z. Yue, Appl. Surf. Sci. 440, 790-803 (2018).
  • [29] C. Cheng, Y. Hu, T. Cao, L. Zhang, Y. W. Zhu, J. Zhao, Corros. Sci. 176, 108942 (2020).
  • [30] Z.D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L.H. Lou, J. Zhang, Acta Metall. Sin. (Engl. Lett.). 30 (9), 878-886 (2017).
  • [31] N. Tada, R. Ohtani, A. Wad, J. Soc. Mat. Sci., Japan 52 (2), 132-138 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50f315ff-d11b-41d0-a321-42cad0847c2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.