PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A framework for autonomous UAV swarm behavior simulation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (14 ; 01-04.09.2019 ; Leipzig, Germany)
Języki publikacji
EN
Abstrakty
EN
In the last several years a large interest in the unmanned aerial vehicles (UAVs) has been seen. This is mostly due to an increase of computational power and decreasing cost of the UAVs itself. One of an intensively researched area is an application of a swarm behavior within team of such UAVs. Simulation tools are one of the means with which quality of solutions in this matter can be measured. In this paper such simulation framework is proposed. The proposed framework is capable of taking under consideration interferences between communicating UAVs, as well as interaction between UAV and surrounding environment. Mathematical models based on which simulation is performed were described, definition of simulation scenario and results of exemplary simulation were also presented.
Rocznik
Tom
Strony
471--478
Opis fizyczny
Bibliogr. 16 poz., wz., rys.
Twórcy
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. A. Kolling, P. M. Walker, N. Chakraborty, K. P. Sycara, and M. Lewis, “Human interaction with robot swarms: A survey,” IEEE Transactions on Human-Machine Systems, vol. 46, pp. 9–26, 2016.
  • 2. C. Gao, Z. Zhen, and H. Gong, “A self-organized search and attack algorithm for multiple unmanned aerial vehicles,” Aerospace Science and Technology, 2016.
  • 3. M. Kim, H. Baik, and S. Lee, “Response threshold model based uav search planning and task allocation,” Journal of Intelligent & Robotic Systems, 2014.
  • 4. H. Cheng, J. Page, and J. Olsen, “Dynamic mission control for uav swarm via task stimulus approach,” American Journal of Intelligent System, vol. 2, pp. 177–183, 01 2013.
  • 5. G. Wang, Q. Li, and L. Guo, “Multiple uavs routes planning based on particle swarm optimization algorithm,” International Symposium on Information Engineering and Electronic Commerce, 07 2010.
  • 6. W. Zhenhua, Z. Weiguo, S. Jingping, and H. Ying, “Uav route planning using multiobjective ant colony system,” in Conference on Cybernetics and Intelligent Systems, pp. 797 – 800, 10 2008.
  • 7. T. Ahmed, D. Feil-Seifer, T. Jiang, S. Jose, S. Liu, and S. Louis, “Development of a swarm uav simulator integrating realistic motion control models for disaster operations,” 10 2017.
  • 8. M. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, and M. P. Goncalves, “Defending against intrusion of malicious uavs with networked uav defense swarms,” pp. 103–111, 10 2017.
  • 9. J. Wang, Y. Tang, J. Kavalen, A. Abdelzaher, and S. P. Pandit, “Autonomous uav swarm: Behavior generation and simulation,” in Conference on Unmanned Aircraft Systems (ICUAS), pp. 1–8, 06 2018.
  • 10. S. Rasmussen, J. Mitchell, P. Chandler, C. Schumacher, and A. Smith, “Introduction to the multiuav2 simulation and its application to cooperative control research,” pp. 4490 – 4501 vol. 7, 07 2005.
  • 11. R. Garcia and L. Barnes, “Multi-uav simulator utilizing x-plane,” Journal of Intelligent and Robotic Systems, vol. 57, pp. 393–406, 01 2010
  • 12. J. Bachrach, J. Mclurkin, and A. Grue, “Protoswarm: A language for programming multi-robot systems using the amorphous medium abstraction,” vol. 2, pp. 1175–1178, 01 2008.
  • 13. F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks. Applied Mathematics Series, Princeton University Press, 2009. Electronically available at http://coordinationbook.info.
  • 14. P. Kruchten, “Architectural blueprints – the 4+1 view model of software architecture,” IEEE Software 12, 1995.
  • 15. "https://www.payara.fish/."
  • 16. "https://javaee.github.io/glassfish/."
Uwagi
1. Track 3: Network Systems and Applications
2. Technical Session: 3rd Workshop on Internet of Things - Enablers, Challenges and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50eaa2b6-1c52-40c8-8bf9-49a00c0ba188
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.