Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The hydroacoustic signatures of ship propellers can be identified experimentally through measurements of cavitation-induced pressure fluctuations and the accompanying noise distribution at model scale. These measurements have to be performed in a cavitation tunnel at the propellers operating conditions and with sufficient accuracy. In comparison, the numerical approach can be used to present a good general idea of the predicted results. Numerical methods can provide highly accurate tools for noise level and propagation prediction, as well as giving insight into the flow field and other key aspects. They are also not influenced by signal conditioning or disturbance sources present in a physical environment. So we trade scope and precision of the results for time and cost reduction. In this paper, we described both experimental and numerical methods currently in use and present advantages and limitations of the practical application of both.
Rocznik
Tom
Strony
89--105
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Ship Design and Research Centre CTO S.A., Gdańsk, Poland
- Energy Conversion Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
- Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdynia Maritime University, Gdynia, Poland
autor
- Energy Conversion Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- [1] Urick R.J.: Principles of Underwater Sound, Chap. 10. McGraw-Hill, New York 1975.
- [2] Kozaczka E.: Investigations of underwater disturbances generated by the ship propeller. Arch. Acoust., 13(1978), 2, 133–152.
- [3] Bendat J.S., Piersol A.G.: Random Data: Analysis and Measurement Procedures, John Wiley & Sons, New York, (2011.
- [4] Oberai A., Ronaldkin F., Hughes T.: Computational procedures for determining structuralacoustic response due to hydrodynamic sources. Comp. Methods Appl. Mech. Eng., 190(2000), 345–361.
- [5] Oberai A., Ronaldkin F., Hughes T.J.R.: Computation of trailing-edge noise due to turbulent flow over an airfoil. AIAA Aeroacoustics J. 40(2002), 2206–2216.
- [6] Caro S., Ploumhans P., Gallez X.: A new formulation based on Lighthill’s Analogy applied to an idealized Automotive HVAC Blower using AcuSolve and Actran/LA. In: Proc. 11th AIAA/CEAS Aeroacoustics Conf. 3015, Monterey 2005.
- [7] ITTC: ITTC – Recommended procedures and guidelines. cavitation induced pressure fluctuations model scale experiments. In: Proc 27th ITTC 2014, 7.5-0.2-03-03.3, 1–16.
- [8] ITTC: ITTC – Recommended procedures and guidelines. model scale noise measurements. In: Proc. of the 27th ITTC 2014, 7.5-0.2-01-05, 1–16.
- [9] ITTC: ITTC – Recommended procedures and guidelines. cavitation – induced pressure fluctuations: Numerical prediction methods. In: Proc. of the 27th ITTC 2014, 7.5-0.2-03-03.4, 1–7.
- [10] Williams J.F.: Hydrodynamic noise. Ann. Rev. Fluid Mech. 1(1969), 1, 197–222.
- [11] ANSI S1.11: Specification for Octave, Half-Octave, and Third-Octave Band Filter Sets. American National Standards Institute.
- [12] International Organization for Standardization (ISO)/Publicly Available Specification (PAS): ISO/PAS 17208-1:2012, Acoustics – quantities and procedures for description and measurement of underwater sound from ships. International Organization for Standardization, Geneva 2012.
- [13] Ianniello S.: The underwater noise prediction from marine propellers: an essentially nonlinear problem. In: Proc. 21st Int. Cong. on Sound and Vibration, Beijing 2014.
- [14] Szantyr J.A., Koronowicz T.: Hydroacoustic activity of the ship propeller operation. Arch. Acoustics 31(2006), 4, 481–487.
- [15] Felicjancik J., Badur J.: Principles and relevance of hydroacoustic research and analyses of ship propellers. Badania i Rozwój Młodych Naukowców w Polsce, Nauki Techniczne i Inżynieryjne, Gdańsk 2016 (in Polish).
- [16] Kowalczyk S., Felicjancik J.: Numerical and experimental propeller noise investigations. Ocean Eng. 120(2016), 108–115.
- [17] Felicjancik J.: Propeller investigations by means of numerical simulation. In: Proc. 4th Int. Conf. on Advanced Model Measurement Technology for the Maritime Industry (AMT’15), Istanbul 2015.
- [18] Kowalczyk S., Kaiser M.: Propeller noise investigations by means of cavitation tunnel measurements. In: Proc.1st Underwater Acoustics Conf., Corfu Island 2013.
- [19] Pty R.M.C.: Reducing underwater noise pollution from large commercial vessels. International Fund for Animal Welfare, 2009.
- [20] Salvatore F., Ianniello, S.: Preliminary results on acoustic modelling of cavitating propellers. Comput. Mech. 32(2003), 4, 291–300.
- [21] Felli M., Falchi M., Dubbioso G.: Experimental approaches for the diagnostics of hydroacoustic problems in naval propulsion. Ocean Eng. 106(2015), 1–19.
- [22] Haimov H., Vicario J., Del Corral J.: RANSE code application for ducted and endplate propellers in open water. In: Proc. 2nd Int. Symp.. on Marine Propulsors., Hamburg 2011.
- [23] Wijngaarden H.C.J. van, Bosschers J., Terwisga T.J.C. van: On predicting cavitationinduced hull pressure fluctuations - wake scale effects and signal variability. IMarEST Ship Noise and Vibration Conf., London 2010.
- [24] Badur J.: Five Lectures of Contemporary Fluid Thermomechanics. Wydawnictwo IMP PAN, Gdańsk 2005 (in Polish).
- [25] Launder B.E, Spalding D.B.: The numerical computation of turbulent flows.Comput.Methods Appl. M. Eng. 3(1974), 2, 269–292.
- [26] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(1994), 8, 1598–1605.
- [27] Gatz M., Łuksza A., Studański R.: Data processing methodology for experimental modeling of ocean waves, data processing method. Sci. J. Polish Naval Ac. 4(2016), 17–31.
- [28] Cerna M., Harvey A.F. The Fundamentals of FFT-Based Signal Analysis and Measurement. National Instruments, Junho 2000.
- [29] Żyszkowski Z.: Fundamentals of Electroacoustics . WNT, Warszawa 1984 (in Polish).
- [30] AQUO- AchieveQUieter Oceansby shippingnoise footprint reduction, FP7 - Collaborative Project No. 314227, FS-5 "Navigator XXI" Measurement Dossier.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50e8d060-ad8a-48c8-aec8-a597c671d26a