PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mission reliability–centered maintenance approach based on quality stochastic flow network for multistate manufacturing systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previous studies of reliability centered maintenance (RCM) rarely consider the maintenance quality for the operation condition monitoring of manufacturing system. Therefore, a quality-oriented maintenance approach for the multistate manufacturing system with the aid of mission reliability is proposed. First, connotations of the mission reliability and maintenance quality of the multistate manufacturing system are expounded on the basis of the operational mechanism. Second, a quality stochastic flow network (QSFN) model of the multistate manufacturing system is established, and a novel mission reliability model is presented. Third, a quality-oriented mission reliability–centered maintenance framework for multistate manufacturing systems is proposed, and the optimal integrated maintenance strategy is obtained by minimizing the total cost. Finally, an industrial example of subway flow receiver is presented to verify the proposed method. Results show that the proposed method can simultaneously balance the maintenance cost and maintenance quality of the multistate manufacturing system.
Rocznik
Strony
455--467
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Beihang University, School of Reliability and Systems Engineering, Beijing, 100191, China
autor
  • Beihang University, School of Reliability and Systems Engineering, Beijing, 100191, China
autor
  • Beihang University, School of Reliability and Systems Engineering, Beijing, 100191, China
autor
  • Beihang University, School of Reliability and Systems Engineering, Beijing, 100191, China
Bibliografia
  • 1. Cai B, Zhang Y, Wang H, Liu Y, Ji R, Gao C, Kong X, Liu J. Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance. Reliability Engineering & System Safety 2021; 209: 107464, https://doi.org/10.1016/j.ress.2021.107464.
  • 2. Cai B, Sheng C, Gao C, Liu Y, Shi M, Liu Z, Feng Q, Liu G. Artificial intelligence enhanced reliability assessment methodology with small samples. IEEE Transactions on Neural Networks and Learning Systems 2021; https://doi.org/ 10.1109/TNNLS.2021.3128514.
  • 3. Chang P, Huang D, Lin Y, Nguyen T. Reliability and maintenance models for a time-related multi-state flow network via d-MC approach. Reliability Engineering & System Safety 2021; 216: 107962, https://doi.org/10.1016/j.ress.2021.107962.
  • 4. Chen Z, Chen Z, Zhou D, Xia T, Pan E. Reliability evaluation for multi-state manufacturing systems with quality-reliability dependency. Computers & Industrial Engineering 2021;154: 107166, https://doi.org/10.1016/j.cie.2021.107166.
  • 5. Cheng G, Li L. Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems. Reliability Engineering & System Safety 2020; 204: 107146, https://doi.org/10.1016/j.ress.2020.107146.
  • 6. Cui P, Wang J, Li Y. Data-driven modelling, analysis and improvement of multistage production systems with predictive maintenance and product quality. International Journal of Production Research 2021; https://doi.org/10.1080/00207543.2021.1962558.
  • 7. Chen Z, He Y, Zhao Y, Han X, He Z. Mission reliability evaluation based on operational quality data for multistate manufacturing systems. International Journal of Production Research 2019; 57(6): 1840–1856, https://doi.org/10.1080/00207543.2018.1508906.
  • 8. Cai B, Xie M, Liu Y, Liu Y, Feng Q. Availability-based engineering resilience metric and its corresponding evaluation methodology. Reliability Engineering & System Safety 2018; 172: 216-224, https://doi.org/ 10.1016/j.ress.2017.12.021.
  • 9. Ding, S. H., and S. Kamaruddin. Maintenance policy optimization – literature review and directions. The International Journal of Advanced Manufacturing Technology 2015; 76 (5–8): 1263–1283, https://doi.org/10.1007/s00170-014-6341-2.
  • 10. Dui H, Zheng X, Zhao Q, Fang Y. Preventive maintenance of multiple components for hydraulic tension systems. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2021;23(3):489-497.
  • 11. Farahani A, Tohidi H. Integrated optimization of quality and maintenance: A literature review. Computers & Industrial Engineering. 2021;151:106924, https://doi.org/10.1016/j.cie.2020.106924.
  • 12. Gao G, Zhou D, Tang H, Hu X.An intelligent health diagnosis and maintenance decision-making approach in smart manufacturing. Reliability Engineering & System Safety 2021;216: 107965, https://doi.org/10.1016/j.ress.2021.107965.
  • 13. Gan J, Zhang W, Wang S, Zhang X. Joint decision of condition-based opportunistic maintenance and scheduling for multi-component production systems. International Journal of Production Research 2021; https://doi.org/10.1080/00207543.2021.1951447.
  • 14. He Y, Gu C, He Z, Cui J. Reliability-oriented quality control approach for production process based on RQR chain. Total quality management & business excellence 2018; 29(5-6): 652-672, https://doi.org/10.1080/14783363.2016.1224086.
  • 15. He Y, Gu C, Zhao Y, Han X. Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis. International Journal of Production Research 2017;55(19): 5841-5862, https://doi.org/10.1080/00207543.2017.1346843.
  • 16. Han X, Wang Z, Xie M, He Y, Li Y, Wang W. Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence.Reliability Engineering & System Safety 2021; 210: 107560,https://doi.org/10.1016/j.ress.2021.107560.
  • 17. He Y, Chen Z, Zhao Y, Han X, Zhou D. Mission Reliability Evaluation for Fuzzy Multistate Manufacturing System Based on an Extended Stochastic Flow Network. IEEE Transactions on Reliability 2019; 69(4): 1-15, https://doi.org/10.1109/TR.2019.2957502.
  • 18. Jasiulewicz‐Kaczmarek M, Antosz K, Wyczółkowski R, Mazurkiewicz D, Sun B, Qian C, Ren Y. Application of MICMAC, Fuzzy AHP and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing. Energies 2021; 14(5), 1436:1-31, https://doi.org/10.3390/en14051436.
  • 19. Lotovskyi E, Teixeira A, Soares C. Availability analysis of an offshore oil and gas production system subjected to age-based preventive maintenance by Petri Nets. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2020;22(4): 627-637.
  • 20. Li W, Zhang C. A bi-objective optimization approach for the maintenance planning of networked systems. Quality and Reliability Engineering International 2020; 36(4):1364-1385, https://doi.org/10.1002/qre.2633.
  • 21. Lin S, Wang Y, Jia Y, Zhang H. Reliability assessment of complex electromechanical systems: A network perspective. Quality and Reliability Engineering International 2018; 34(5):772-790, https://doi.org/10.1002/qre.2289.
  • 22. Li X, Ran Y, Zhang G, Yu H. Selective maintenance of multi-state series systems considering maintenance quality uncertainty and failure effects. Processings of the Institution of Mechanical Engineering 2021; 235(5):1363-1374, https://doi.org/10.1177/0954408921996932.
  • 23. Matuszczak M, Zbikowski M, Teodorczyk A. Predictive modelling of turbofan engine components condition using machine and deep learning methods. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2021;23(2):359-370.
  • 24. Pan R., and D. J. Lee. Predictive Maintenance of complex system with multi-level reliability structure. International Journal of Production Research 2017;55: 4785–4801, https://doi.org/10.1080/00207543.2017.1299947.
  • 25. Qin J, Li Z. Reliability modeling for multistate system with preventive maintenance under customer demand. Complexity 2020;2020:3165230,https://doi.org/10.1155/2020/3165230.
  • 26. Qiu Q, Liu B, Lin C, Wang J. Availability analysis and maintenance optimization for multiple failure mode systems considering imperfect repair. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2021;235(6):982-997, https://doi.org/10.1177/1748006X211012792.
  • 27. Rad, M. A., Khoshalhan, F., & Glock, C. H. Optimizing inventory and sales decisions in a two-stages supply chain with imperfect production and backorders. Computers and Industrial Engineering 2014; 74:219–227, https://doi.org/10.1016/j.cie.2014.05.004.
  • 28. Shang L, Wang H, Wu C, Cai Z. The post-warranty random maintenance policies for the product with random working cycles. Eksploatacja I Niezawodnosc - Maintenance and Reliability 2021; 23(4):726-735.
  • 29. Xu, J, Liang, Z,Li, Y,Wang, K. Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance. Reliability Engineering & System Safety 2021;211: 107592, https://doi.org/10.1016/j.ress.2021.107592.
  • 30. Yu, P, Fu, W, Wang L, Zhou Z, Wang G, Zhang Z. Reliability-Centered Maintenance for Modular Multilevel Converter in HVDC Transmission Application. IEEE Journal of Emerging and Selected Topics in Power Electronics 2020; 9(3):3166-3176, https://doi.org/10.1109/JESTPE.2020.3009389.
  • 31. Zhang C, Zhang Y, Dui H, Wang S, Tomovic MM. Importance measure-based maintenance strategy considering maintenance costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022;24 (1): 15–24.
  • 32. Zhang N, Cai K, Zhang J, Wang T. A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system. Reliability Engineering & System Safety 2022;217:108069, https://doi.org/10.1016/j.ress.2021.108069.
  • 33. Zhao Y, He Y, Zhou D,Zhang A, Han X, Li Y, Wang W. Functional risk-oriented integrated preventive maintenance considering product quality loss for multistate manufacturing systems. International Journal of Production Research 2021;59(4):1003-1020, https://doi.org/10.1080/00207543.2020.1713416.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50e6432d-c148-43ec-ac25-a5c408c716ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.