PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ATZ composites resistant to subcritical crack propagation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ATZ (alumina toughened zirconia) particulate composites are materials which utilize the phenomenon of residual thermal stresses arising during cooling from the sintering temperature to normal conditions. Since the stresses in zirconium dioxide grains are tensile, they increase the susceptibility to transformation of the tetragonal phase into the monoclinic one, a phenomenon which is used to strengthen the material, i.e. to increase its resistance to cracking. The paper presents the results of research on composites that were manufactured by means of special technology using the sintering of a mixture of ZrO2 powderswith various contents of the stabilizing oxide Y2O3. These materials, thanks to a significant reduction in grain size, demonstrate excellent mechanical parameters, strength and resistance to brittle fracture. Moreover, it was found that incorporating alumina grains in the zirconia matrix can cause the distribution of stress to significantly reduce the tendency to subcritical cracking, which is a high risk for oxide ceramics. It was found that for some ATZ composites the phenomenon of subcritical cracking was inhibited in both air and water environments.
Rocznik
Strony
194--199
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • IEN Institute of Power Engineering, Ceramic Branch CEREL, ul. Techniczna 1, Boguchwała, Poland
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • Technology University of Havana, Havana, Cuba
autor
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
  • Technology University of Havana, Havana, Cuba
  • AGH University of Krakow, Faculty of Material Science and Ceramics, al. Adama Mickiewicza 30, 36-040 Krakow, Poland
Bibliografia
  • 1. Liang Y., Dutta S.P., Application trend in advanced ceramic technologies, Technovation 2001, 21, 61-65.
  • 2. Kelly J.R., Denry I., Stabilized zirconia as a structural ceramic: an overview, Dent. Mater. 2008, 24, 289-298.
  • 3. Garvie R.C., Hannink R.H., Pascoe R.T., Ceramic steel? Nature 1975, 258, 703-704.
  • 4. Boniecki M., Sadowski T., Gołębiewski P., Węglarz H., Piątkowska A., Romaniec M., Krzyżak K., Łosiewicz K.,
  • Mechanical properties of alumina/zirconia composites, Ceram. Int. 2020, 46(1), 1033-1039, DOI: 10.1016/j.ceramint.2019.09.068.
  • 5. Naglieri V., Palmero P., Montanaro L., Chevalier J., Elaboration of alumina zirconia composites: Role of the zirconia content on the microstructure and mechanical properties, Materials 2013, 6, 2090-2102, DOI: 10.3390/ma6052090.
  • 6. Maji A., Choubey G., Microstructure and mechanical properties of alumina toughened zirconia (ATZ), Mater. Today Proc. 2018, 5, 7457-7465.
  • 7. Abbas M.K.G., Ramesh S., Lee K.Y.S., Wong Y.H., Ganesan P., Ramesh S., Alengara U.J., Treng W.D., Purbolaksono J., Effects of sintering additives on the densification and properties of alumina-toughened zirconia ceramic composites, Ceram. Int. 2020, 46, 27539-27549.
  • 8. Danilenko I., Konstantinova T., Volkova G., Burkhovetski V., Glazunova V., The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount, J. Ceram. Sci. Technol. 2015, 6, 2015, DOI: 10.4416/JCST2015-00020.
  • 9. Tuan W.H., Chen R.Z., Wang T.C., Cheng C.H., Kuo P.S., Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc. 2002, 22, 16, 2827-2833.
  • 10. Nevarez-Rascon A., Aguilar-Elguezabal A., Orrantia E., Bocanegra-Bernal M.H., On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content, Int. Jour. Ref. Met. & Hard Mater. 2009, 27, 6, 962-970.
  • 11. Okada A., Automotive and industrial applications of structural ceramics in Japan, J. Eur. Ceram. Soc. 2008, 28, 1097-1104, DOI: 10.1016/j. jeurceramsoc.2007.09.016.
  • 12. Okada A., Ceramic technologies for automotive industry: current status and perspectives, Mater. Sci. Eng. B Solid- State Mater. Adv. Technol. 2009, 161, 182-187, DOI:10.1016/j.mseb.2008.11.017.
  • 13. Begand S., Glien W., Oberbach T., ATZ – A new material with a high potential in joint replacement, Key Eng. Mater. 2005, 284-286, 983-986.
  • 14. Hampshire S., Pomeroy M.J., Overview: oxide ceramics and non-oxide ceramics, Encycl. Mater. Tech. Ceram. Glas. 2021, DOI: 10.1016/B978-0-12-818542-1.00104-1.
  • 15. Kim T., See C.W., Li., Zhu D., Orthopedic implants and devices for bone fractures and defects: past, present and perspective, Eng. Regen. 2020, 1, DOI: 10.1016/j.engreg.2020.05.003.
  • 16. Chevalier J., Gremillard L., Ceramics for medical applications: a picture for the next 20 years, J. Eur. Ceram. Soc. 2009, 29, 1245-1255, DOI: 10.1016/j.jeurceramsoc.2008.08.025.
  • 17. Hannink R.H.J., Kelly P.M., Muddle B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc. 2000, 83(3), 461-487.
  • 18. Karihaloo B.L., Contributions of t–m phase transformation to the toughening of ZTA, J. Am. Ceram. Soc. 1991, 74, 1703-1706.
  • 19. Magnani G., Brillante A., Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia-alumina composites, J. Eur. Ceram. Soc. 2005, 25, 15, 3383-3392, DOI: 10.1016/j.jeurceramsoc. 2004.09.025.
  • 20. Grabowski G., Lach R., Pędzich Z., Świerczek K., Wojteczko A., Anisotropy of thermal expansion of 3Y-TZP,
  • α-Al2O3 and composites from 3Y-TZP/α-Al2O3 system, Archiv. Civ. Mech. Eng. 2018, 18, 188-197, DOI: 10.1016/ j.acme.2017.06.008.
  • 21. Grabowski G., Pędzich Z., Residual stresses in particulate composites with alumina and zirconia matrices, J. Eur. Ceram. Soc. 2007, 27(2-3), 1287-1292, DOI: 10.1016/j.jeurceramsoc.2006.04.096.
  • 22. Bermejo R., Supancic P., Krautgasser C., Morrel R., Danzer R., Subcritical crack growth in low temperature co-fired ceramics under biaxial loading, Eng. Frac. Mech. 2013, 100,108-121.
  • 23. Wojteczko A., Petaud G., Lach R., Pędzich Z., Lifetime determination of tetragonal zirconia under static loading using the constant stress rate, J. Eur. Ceram. Soc. 2017, 37, 4346-4350.
  • 24. Davidge R.W., McLaren J.R., Tappin B., Strength-probability-time (SPT) relationships in ceramics, J. Mat. Sci. 1973 8, 1699-1705.
  • 25. Bermejo R., Subcritical crack growth: Modeling of the v-K curve in different environments, Encyclopedia of Materials: Technical Ceramics and Glasse 2021, 1, 811-817.
  • 26. Wojteczko A., Lach R., Wojteczko K., Rutkowski P., Zientara D., Pędzich Z., Subcritical crack growth in oxide and non-oxide ceramics using the Constant Stress Rate Test, Proc. Appl. Ceram. 2015, 9(4), 187-191.
  • 27. Grabowy M., Wojteczko A., Komarek S., Wilk A., Pędzich Z., ATZ composites with enhanced mechanical reliability and lifetime, J. Eur. Ceram. Soc. 2024, 44(9), 5319-5325, DOI:10.1016/j.jeurceramsoc.2023.12.030.
  • 28. De Aza A.H., Chevalier J., Fantozzi G., Schehl M., Torrecillas R., Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials 2002, 23, 937-945.
  • 29. Wojteczko A., Lach R., Wojteczko K., Pędzich Z., Investigations
  • of the subcritical crack growth phenomenon and the estimation of lifetime of alumina and alumina-zirconia composites with different phase arrangements, Cer. Int. 2016, 42(8), 9438-9442, DOI: 10.1016/j.ceramint.2016. 02.178.
  • 30. Wojteczko A., Lach R., Wojteczko K., Pędzich Z., Estimation of lifetime of zirconia and zirconia-alumina composites using constant stress rate data, Comp. Theory and Practice 2017, 17(1), 14-18.
  • 31. Niihara K., A fracture mechanics analysis of indentationinduced Palmqvist crack in ceramics, J. Mater. Sci. Lett. 1983, 2, 221-223, DOI: 10.1007/ BF00725625.
  • 32. ASTM F394-78, Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates, 1996.
  • 33. ASTM C1368-06, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature.
  • 34. Taya M., Hayashi S., Kobayashi A.S., Yoon H.S., Toughening of a particulate reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc. 1990, 73, 1382-1391, DOI: 10.1111/j.1151-2916.1990.tb05209.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50dfea09-a22b-4cd0-b53c-ae78d3f4e5ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.