PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of Production of Energy Crops in Ukraine and their Processing on Solid Biofuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renewable energy sources in Ukraine account for only 4% of the total energy consumption today. At the same time, Ukraine has favorable climatic conditions and fertile soils, as well as areas of agricultural land, which make it possible to meet the demand for food products both for domestic consumption and for export. The tendencies towards the depletion of traditional fuels and their rise in price determine the diversification of the fuel and energy sector and the search for reserves for the production of their own environmentally friendly energy. The paper describes the characteristics of energy crops for biofuel production. The advantages of growing bioenergy crops were presented. The characteristics of energy crops in relation to growing conditions were determined. Ukraine has a great potential for growing the most popular energy crops: miscanthus, switchgrass, energy willow, poplar without endangering food security but this potential has not been realized yet.
Twórcy
  • Department of Management and Law, Vinnytsia National Agrarian University, Ukraine
  • Department of Management and Law, Vinnytsia National Agrarian University, Ukraine
  • Department of Management and Law, Vinnytsia National Agrarian University, Ukraine
Bibliografia
  • 1. Alexopoulou E, Christou M, Eleftheriadis I.D. Role of 4F cropping in determining future biomass potentials, including sustainability and policy related issues. Biomass Department of CRES. 2012. Retrived from http://www.biomassfutures.eu/public_docs/final_deliverables/WP3/D3.2%20Role%20of%204F%20crops.pdf.
  • 2. Amaducci, S., Facciotoo, G., Bergante, S., Perego, A., Serra, P., Ferraini, A., & Chimento, C. 2017. Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po Valley. Global Change Biology Bioenergy, 9, 31–45.
  • 3. Amichev, B.Y., Volk, T.A., Hangs, R.D., Bélanger, N., Vujanovic, V., Van Rees, K.C.J. 2018. Growth, survival, and yields of 30 short-rotation willow cultivars on the Canadian Prairies: 2nd rotation implications. New Forests, 49, 649–665.
  • 4. Blum Ya.B., Geletukha G.G., Grigoryuk I.P. et al. 2010. New technologies of bioenergy conversion. К: "Agrar Media Group", 326 p.
  • 5. Buzovsky E.A., Vytvytska O.D., Skrypnychenko V.A. 2008. Unconventional energy sources – the requirements of the time. Scientific Bulletin of the National Agrarian University of Ukraine, 119. 289–294.
  • 6. Chaika T.O, Yasnolob I.O. 2017. Ecological, socioeconomic advantages of growing energy crops. Economics of Agro-Industrial Complex, 12, 28-34.
  • 7. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028.
  • 8. Dubis, B., Jankowski, K.J., Załuski, D. 2019. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large‐scale farm in Poland. 2019. GCB Bioenergy, 11,1187–1201.
  • 9. Elbersen H.W. 2001. Switchgrass variety choice in Europe. Aspects of Applied Biology, 65. 21–28.
  • 10. Energy Strategy of Ukraine till 2035. Retrieved from http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=245213112.
  • 11. Fernando, A. L., Duarte, M. P., Almeida, J., Boléo, S., & Mendes, B. 2010. Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioproducts and Biorefining, 4(6), 594-604.
  • 12. Ganzhenko O.M. Features of cultivation and use of energy crops. Presentation. 2017. Retrieved from https://saee.gov.ua/uk/news/1751.
  • 13. Green Energy Transition of Ukraine until 2050, Ministry of Energy and Environmental Protection of Ukraine], 2020. Retrieved from https://bit.ly/2tR0P7n.
  • 14. Hanegraaf, M.C. & Biewinga, E.E. 1998. Assessing the ecological and economic sustainability of energy crops. Biomass and Bioenergy, 15(4-5), 345-355.
  • 15. Heletukha, H., Drahniev, S., Kucheruk, P., Matvieiev, Yu. 2017. A practical guide to the use of biomass as a fuel in the municipal sector of Ukraine (for representatives of the agro-industrial complex)]. Retrieved from http://bioenergy.in.ua/media/filer_public/f5/9c/f59c3f7f-8eca-4b6d-94cd-ffda1150f3ae/ biofin.pdf.
  • 16.Janiszewska, D. & Ossowska, L. 2020. Biomass as the most popular renewable energy source in EU. Retrieved from https://www.um.edu.mt/library/oar/handle/123456789/58012.
  • 17. Kaletnik, G., Honcharuk, I., & Okhota, Y. 2020. The Waste-Free Production Development for the Energy Autonomy Formation of Ukrainian Agricultural Enterprises. Journal Of Environmental Management And Tourism, 11(3), 513-522.
  • 18. Kalinichenko А., Kalinichenko О., Kulyk М. 2017. Assessment of available potential of agro-biomass and energy crops phytomass for biofuel production in Ukraine. In: I. Pietkun-Greber, P. Ratuszny (Eds.) Odnawialne źródła energii: teoria i praktyka. Monograph. Uniwersytet Opolski, Opole, Kijw, pp. 163–179.
  • 19. Katelevskyi, V. 2020. aspects of the use of giant miscanthus in the world and in Ukraine. Retrieved from https://uabio.org/wp-content/uploads/2020/12/Katelevskyi_miscanthus_11-12-2020.pdf.
  • 20. Khivrych O.B., Kvaka V.M., Kaskiv V.V., Mamaisur V.V., Makarenko A.S. 2011. Energy plants as an alternative to traditional fuels. Agrobiology, 6, 153-157.
  • 21. Kiesel, A., Wagner, M., & Lewandowski, I. 2017. Environmental performance of miscanthus, switchgrass and maize: Can C4 perennials increase the sustainability of biogas production? Sustainability, 9, 1–20.
  • 22. Koçar, G., and Civaş, N. 2013. An overview of biofuels from energy crops: Current status and future prospects. Renewable and Sustainable Energy Reviews, 28, 900-916.
  • 23. Kulyk M., Kurilo V., Pryshliak, N., Pryshliak, V. 2020. Efficiency of optimized technology of switchgrass biomass. Production for Biofuel Processing. Journal of Environmental Management and Tourism, XI, 1(41), 173-185.
  • 24. Kulyk M., Rakhmetov D., Rozhko I., Siplyva N. 2019. Source material of millet of Panicum virgatum L. on a complex of economically valuable features in the conditions of the central forest-steppe of Ukraine. Sorting and Protection of Plant Variety Rights, 15, 4, 354–364.
  • 25. Kulyk, M., Kalynychenko, O., Pryshliak, N., & Pryshliak, V. 2020. Efficiency of using biomass from energy crops for sustainable bioenergy development. Journal of Environmental Management & Tourism, 11(5), 1040-1053.
  • 26. Marchenko V. 2012. Energy crops in Ukraine. Agroexpert, 9, 114-117.
  • 27. McCalmont, J.P., Hastings, A., McNamara, N.P., Richter, G.M., Robson, P., Donnison, I.S., & Clifton-Brown, J.C. 2017. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Global Change Biology Bioenergy, 9, 489–507.
  • 28. Moser L.E. and Vogel K.P. 1995. Switchgrass, big bluestem, and indiangrass. An introduction to grassland agriculture, 1, 409-420.
  • 29. Nordborg, M., Berndes, G., Dimitriou, I., Henriksson, A., Mola-Yudego, B., Rosenqvist, H. 2018. Energy analysis of willow production for bioenergy in Sweden. Sustainable Energy Review, 93, 473–482.
  • 30. Official website of JSC "Naftohaz of Ukraine". 2020. Retrieved from https://www.naftogaz.com.
  • 31. Official website of the Eurostat. (2020). Retrieved from https://ec.europa.eu/eurostat/data/database.
  • 32. Pryshliak, N. 2021. Potential possibilities of growing bioenergy crops for the production of solid biofuels. Agrosvit, 1-2, 33–45.
  • 33. Pryshliak, N., Tokarchuk, D. 2020. Socio-economic and environmental benefits of biofuel production development from agricultural waste in Ukraine. Environmental & Socio-Economic Studies, 8, (1), 18-27.
  • 34. Ramos, A., Monteiro, E., Silva, V., & Rouboa, A. 2018. Co-gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews, 81, 380-398.
  • 35. Scholz, V., Berg, W., & Kaulfuss, P. 1998. Energy balance of solid biofuels. Journal of Agricultural Engineering Research, 71(3), 263-272.
  • 36. Stolarski, M. J., Niksa, D., Krzyżaniak, M., Tworkowski, J., & Szczukowski, S. 2019. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renewable and Sustainable Energy Reviews, 101, 461–475.
  • 37. Stolarski, M. J., Niksa, D., Krzyżaniak, M., Tworkowski, J., & Szczukowski, S. 2020. Effects of site, genotype and subsequent harvest rotation on willow productivity. Agriculture, 10(9), 412.
  • 38. Tokarchuk, D.M., Pryshliak, N.V., Tokarchuk, O.A., Mazur, K.V. 2020. Technical and economic aspects of biogas production at a small agricultural enterprise with modelling of the optimal distribution of energy resources for profits maximization. INMATEH – Agricultural Engineering, 61(2), 339-349.
  • 39. Trypolska, G. & Kyryzyuk, S. 2018. Development of Ukraine’s bioenergy sector in the context of the EU guidelines. Economy and Forecasting, 3, 138-159.
  • 40. Zegada-Lizarazu, W., and Monti, A. 2011. Energy crops in rotation. A review. Biomass and Bioenergy, 35(1), 12-25.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50da55fa-9525-4c28-83e0-b89f927abf37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.