PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A coupled three-dimensional physical model and a nitrogen-based nutrient, phytoplankton, zooplankton, and detritus (NPZD) ecosystem model were applied to simulate the summer coastal upwelling system over the continental shelf of northern South China Sea (NSCS) and its impact on hydrographic conditions and ecosystem. The simulated results were comprehensively validated against field and satellite measurements. The model results show that the near shore ecosystem of NSCS has significant responses to the summer coastal upwelling system. The Shantou Coast to the Nanri Islands of Fujian province (YD) and the east of the Leizhou Peninsula (QD) are two main regions affected by NSCS summer coast upwelling. During summer, these two coastal areas are characterized by nearshore cold and high salinity upwelling current. Further, the summer coastal upwelling serves as a perfect nutrient pump, which lifts up and advects nutrient-rich current from deep to surface, from inner shelf to about 30 km outer shelf. This nutrient source reaches its maximum in the middle of July and then begins to decrease. However, the maximum phytoplankton and chlorophyll a do not coincide with the maximum nutrients and delay for about 10 days. Because of the intensive seasonal thermocline and the complicated current transporting through Qiongzhou strait, the ecological responding of QD is less pronounced than YD. This study has a better understanding of the physically modulated ecological responses to the NSCS summer coastal upwelling system.
Czasopismo
Rocznik
Strony
32--51
Opis fizyczny
Bibliogr. 61 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
Bibliografia
  • [1] Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fish. Oceanogr. 12 (4-5), 245-259, http://dx.doi.org/10.1046/j.1365-2419.2003.00265.x.
  • [2] Cai, P. H., Huang, Y. P., Chen, M., Guo, L. D., Liu, G. S., Qiu, Y. S., 2002. New production based on Ra-228-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea Res. Pt. I 49 (1), 53-66, http://dx.doi.org/10.1016/S0967-0637(01)00040-1.
  • [3] Casey, K. S., Cornillon, P., 1999. A comparison of satellite and in situ-based sea surface temperature climatologies. J. Clim. 12 (6), 1848-1863, http://dx.doi.org/10.1175/1520-0442(1999)012<1848:ACOSAI>2.0.CO;2.
  • [4] Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., Siwertz, N., 1998. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28 (3), 433-460, http://dx.doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.
  • [5] Chen, C. C., Shiah, F. K., Chung, S. W., Liu, K. K., 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Mar. Syst. 59 (1-2), 97-110, http://dx.doi.org/10.1016/j.jmarsys.2005.09.002.
  • [6] Chenillat, F., Riviere, P., Capet, X., Di Lorenzo, E., Blanke, B., 2012. North Pacific Gyre Oscillation modulates seasonal timing and ecosystem functioning in the California Current upwelling system. Geophys. Res. Lett. 39 (1), L15606, 6 pp., http://dx.doi.org/10.1029/2011GL049966.
  • [7] Chenillat, F., Riviere, P., Capet, X., Franks, P. J. S., Blanke, B., 2013. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem. PLOS ONE 8 (5), e66281, 15 pp., http://dx.doi.org/10.1371/journal.pone.0062281.
  • [8] Cropper, W. P., DiResta, D., 1999. Simulation of a Biscayne Bay, Florida commercial sponge population: effects of harvesting after Hurricane Andrew. Ecol. Model. 118 (1), 1-15, http://dx.doi.org/10.1016/S0304-3800(99)00039-3.
  • [9] Davenport, E. D., Fan, C., Govoni, J. J., Anderson, J., 2012. Description and application of a NPZD Model to forecast hurricane impacts to secondary production in coastal ecosystems. Proc. Environ. Sci. 13, 1569-1584, http://dx.doi.org/10.1016/j.proenv.2012.01.149.
  • [10] Dong, L. X., Sun, J. L., Wong, L. A., Cao, Z. Y., Chen, J. C., 2004. Seasonal variation and dynamics of the Pearl River plume. Cont. Shelf. Res. 24 (16), 1761-1777, http://dx.doi.org/10.1016/j.csr.2004.06.006.
  • [11] Ehlert, C., Grasse, P., Frank, M., 2013. Changes in silicate utilisation and upwelling intensity off Peru since the Last Glacial Maximum — insights from silicon and neodymium isotopes. Quater. Sci. Rev. 72 (4), 18-35, http://dx.doi.org/10.1016/j.quascirev.2013.04.013.
  • [12] Fan, W., Song, J. B., Li, S., 2014. A numerical study on seasonal variations of the thermocline in the South China Sea based on the ROMS. Acta Oceanol. Sin. 33 (7), 56-64, http://dx.doi.org/10.1007/s13131-014-0504-8.
  • [13] Fennel, K., Boss, E., 2003. Subsurface maxima of phytoplankton and chlorophyll: steadystate solutions from a simple model. Limnol. Oceanogr. 48 (4), 1521-1534, http://dx.doi.org/10.4319/lo.2003.48.4.1521.
  • [14] Fasham, M. J. R., Ducklow, H. W., Mckelvie, S. M., 1990. A nitrogen-based model of plankton in the oceanic mixed layer. J. Mar. Res. 48 (3), 591-639, http://dx.doi.org/10.1357/002224090784984678.
  • [15] Fernandes, S. O., Halarnekar, R., Malik, A., Vijayan, V., Kumari, R., Jineesh, V. K., Gauns, M. U., Nair, S., LokaBharathi, P. A., 2014. Nitrate reducing activity pervades surface waters during upwelling. J. Mar. Syst. 137 (3), 35-46, http://dx.doi.org/10.1016/j.jmarsys.2014.04.011.
  • [16] Freon, P., Barange, M., Aristegui, J., 2009. Eastern boundary upwelling ecosystems: integrative and comparative approaches preface. Prog. Oceanogr. 83 (1-4), 1-15, http://dx.doi.org/10.1016/j.pocean.2009.08.001.
  • [17] Gan, J. P., Cheung, A., Guo, X. G., Li, L., 2009a. Intensified upwelling over a widened shelf in the northeastern South China Sea. J. Geophys. Res. 114 (C9), 2157-2165, http://dx.doi.org/10.1029/2007JC004660.
  • [18] Gan, J. P., Lu, Z. M., Dai, M. H., Cheung, A. Y. Y., Liu, H. B., Paul, H., plume in the northeastern South China Sea: a modeling study. J. Geophys. Res. 115 (C9), 292-295, http://dx.doi.org/10.1029/2009JC005569.
  • [19] González-Gil, R., González Taboada, F., Höfer, J., Anadón, R., 2015. Winter mixing and coastal upwelling drive long-term changes in zooplankton in the Bay of Biscay (1993-2010). J. Plankton Res. 37 (2), 337-351, http://dx.doi.org/10.1093/plankt/fbv001.
  • [20] Heinle, A., Slawig, T., 2013. Internal dynamics of NPZD type ecosystem models. Ecol. Model. 254, 33-42, http://dx.doi.org/10.1016/j.ecolmodel.2013.01.012.
  • [21] Hernández-Carrasco, I., Rossi, V., Hernández-García, E., Garcon, V., López, C., 2014. The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling. Deep-Sea Res. Pt. I 839 (1), 65-80, http://dx.doi.org/10.1016/j.dsr.2013.09.003.
  • [22] Huete-Ortega, M., Marañón, E., Varela, M., Bode, A., 2010. General patterns in the size scaling of phytoplankton abundance in coastal waters during a 10-year time series. J. Plankton Res. 32 (1), 1-14, http://dx.doi.org/10.1093/plankt/fbp104.
  • [23] Jing, Z. Y., Qi, Y. Q., Hua, Z. L., 2008. Numerical study on summer upwelling over northern continental shelf of South China Sea. J. Trop. Oceanogr. 30 (6), 1068-1081, (in Chinese).
  • [24] Joint, I., Inall, M., Torres, R., Figueiras, F. G., Alvarez-Salgado, X. A., Andrew, P. R., Woodward, E. M. S., 2001. Two Lagrangian experiments in the Iberian Upwelling System: tracking an upwelling event and an off-shore filament. Prog. Oceanogr. 51 (2-4), 221-248, http://dx.doi.org/10.1016/S0079-6611(01)00068-4.
  • [25] Kononen, K., Hallfors, S., Kokkonen, M., Kuosa, H., Laanemets, J., Pavelson, J., Autio, R., 1998. Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea. Limnol. Oceanogr. 43 (6), 1089-1106, http://dx.doi.org/10.4319/lo.1998.43.6.1089.
  • [26] Krishna, K. M., 2008. Coastal upwelling along the southwest coast of India — ENSO modulation. Ann. Geophys. 26 (6), 123-134, http://dx.doi.org/10.5194/angeo-26-1331-2008.
  • [27] Li, B. H., Jian, Z. M., 2001. Evolution of planktonic foraminifera and thermocline in the southern South China Sea since 12 Ma (ODP-184, Site 1143). Sci. China Ser. D — Earth Sci. 44 (10), 889-896, http://dx.doi.org/10.1007/BF02907080.
  • [28] Li, R. H., Liu, S. M., Li, Y. W., Zhang, G. L., Ren, J. L., Zhang, J., 2014. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences 11 (2), 481-506, http://dx.doi.org/10.5194/bg-11-481-2014.
  • [29] Li, Y. N., Peng, S. Q., Yang, W., Wang, D. X., 2012. Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds. Chin. J. Oceanol. Limnol. 30 (6), 1068-1081, http://dx.doi.org/10.1007/s00343-012-1275-8.
  • [30] Li, Q. P., Wang, Y. J., Dong, Y., Gan, J. P., 2015. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res. 120 (6), 3913-3936, http://dx.doi.org/10.1002/2014JC010609.
  • [31] Liu, Q. Y., Jia, Y. L., Liu, P. H., Wang, Q., Chu, P. C., 2001. Seasonal and intraseasonal thermocline variability in the Central South China Sea. Geophys. Res. Lett. 28 (23), 4467-4470, http://dx.doi.org/10.1029/2001GL013185.
  • [32] Lopes, J. F., Ferreira, J. A., Cardoso, A. C., Rocha, A. C., 2014. Variability of temperature and chlorophyll of the Iberian Peninsula near coastal ecosystem during an upwelling event for the present climate and a future climate scenario. J. Mar. Syst. 129 (1), 271-288, http://dx.doi.org/10.1016/j.jmarsys.2013.07.002.
  • [33] Lu, Z. M., Gan, J. P., Dai, M. H., Cheung, A. Y. Y., 2010. The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea. J. Mar. Syst. 82 (1-2), 35-46, http://dx.doi.org/10.1016/j.jmarsys.2010.03.002.
  • [34] MacIsaac, J. J., Dugdale, R. C., Barber, R. T., Blasco, D., Packard, T. T., 1985. Primary production cycle in an upwelling center. Deep-Sea Res. Pt. I 32 (5), 503-529, http://dx.doi.org/10.1016/0198-0149(85)90042-1.
  • [35] Morton, B., Blackmore, G., 2000. South China Sea. Mar. Pollut. Bull. 42 (12), 1236-1263, http://dx.doi.org/10.1016/S0025-326X(01)00240-5.
  • [36] Muller-Karger, F., Varela, R., Thunell, R., Scranton, M., Bohrer, R., Taylor, G., Capelo, J., Astor, Y., Tappa, E., Ho, T. Y., Walsh, J. J., 2001. Annual cycle of primary production in the Cariaco Basin: response to upwelling and implications for vertical export. J. Geophys. Res. 106 (C3), 4527-4542, http://dx.doi.org/10.1029/1999JC000291.
  • [37] Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., Shi, J., 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109 (C10), 215-255, http://dx.doi.org/10.1029/2004JC002365.
  • [38] Ogasawara, H., 2010. Accurate distribution and its asymptotic expansion for the tetrachoric correlation coefficient. J. Multivariate-Anal. 101 (4), 936-948, http://dx.doi.org/10.1016/j.jmva.2009.12.011.
  • [39] Park, T. Y., Jang, I. S., Ha, Y. H., 2009. Banding artifact reduction with interweaving dot dispersion based on probability model and human visual system weighted root mean squared error in blue noise multilevel dithering. J. Imaging Sci. Technol. 53 (6), 60504-1-60504-13, http://dx.doi.org/10.2352/J.ImagingSci.Technol.2009.53.6.060504.
  • [40] Penven, P., Debreu, L., Marchesiello, P., McWilliams, J. C., 2006. Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Model. 12 (1-2), 157-187, http://dx.doi.org/10.1016/j.ocemod.2005.05.002.
  • [41] Powell, T. M., Lewis, C. V. W., Curchitser, E. N., Haidvogel, D. B., Hermann, A. J., Dobbins, E. L., 2006. Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery. J. Geophys. Res. 111 (C7), 520-522, http://dx.doi.org/10.1029/2004JC002506.
  • [42] Prego, R., Guzmán-Zuñiga, D., Varela, M., de Castro, M., Gómez-Gesteira, M., 2007. Consequences of winter upwelling events on biogeochemical and phytoplankton patterns in a western Galicianria (NW Iberian peninsula). Estuar. Coast. Shelf Sci. 73 (3-4), 409-422, http://dx.doi.org/10.1016/j.ecss.2007.02.004.
  • [43] Riley, G. A., Stommel, H., 1949. Quantitative ecology of the plankton of the Western North Atlantic. Bull. Bingham Oceanogr. Collect. 12 (3), 1-169.
  • [44] Ruzicka, J. J., Brink, K. H., Gifford, D. J., Bahr, F., 2016. A physically coupled end-to-end model platform for coastal ecosystems: simulating the effects of climate change and changing upwelling characteristics on the Northern California Current ecosystem. Ecol. Model. 331, 86-99, http://dx.doi.org/10.1016/j.ecolmodel.2016.01.018.
  • [45] Santos, F., Gesteira, M. G., Decastro, M., 2011. Coastal and oceanic SST variability along the western Iberian Peninsula. Cont. Shelf. Res. 31 (19), 2012-2017, http://dx.doi.org/10.1016/j.csr.2011.10.005.
  • [46] Sawant, S. S., Madhupratap, M., 1996. Seasonality and composition of phytoplankton in the Arabian Sea. Curr. Sci. India 71 (11), 869-873.
  • [47] Shchepetkin, A. F., McWilliams, J. C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9 (4), 347-403, http://dx.doi.org/10.1016/j.ocemod.2004.08.002.
  • [48] Shchepetkin, A. F., McWilliams, J. C., 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126 (6), 1541-1580, http://dx.doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.
  • [49] Song, X. Y., Lai, Z. G., Ji, R. B., Chen, C. S., Zhang, J. L., Huang, L. M., Yin, J. Q., Wang, Y. S., Lian, S. M., Zhu, X. M., 2012. Summertime primary production in northwest South China Sea: interaction of coastal eddy, upwelling and biological processes. Cont. Shelf. Res. 48 (1), 110-121, http://dx.doi.org/10.1016/j.csr.2012.07.016.
  • [50] Song, X. Y., Liu, H., Huang, L., 2010. Distribution characteristics of basic biological production and its influencing factors in the northern South China Sea in summer. Acta Ecol. Sin. 30 (23), 6409-6417, http://dx.doi.org/1000-0933(2010)30:23<6409:NHBBXJ>2.0.TX;2-G.
  • [51] Taylor, K. E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106 (D7), 7183-7192, http://dx.doi.org/10.1029/2000JD900719.
  • [52] Turner, J. T., Tester, P. A., 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr. 42 (5), 1203-1214, http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1203.
  • [53] Vilhena, M. D. S. P., Costa, M. L. D., Berrêdo, J. F., Paiva, R. S., Almeida, P. D., 2014. Chemical composition of phytoplankton from the estuaries of Eastern Amazonia. Acta Amazon. 44 (4), 513-526, http://dx.doi.org/10.1590/1809-4392201305244.
  • [54] Wang, Y. S., 2013. Quantitative Marine Ecology. Sci. Press, Beijing, 328-334.
  • [55] Wang, D. X., Shu, Y. Q., Xue, H. J., Hu, J. Y., Chen, J., Zhuang, W., Zu, T. T., Xu, J. D., 2014a. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea. J. Geophys. Res. 119 (4), 2550-2567, http://dx.doi.org/10.1002/2013JC009172.
  • [56] Wang, Q. Y., Wang, X. W., Xie, L. L., Shang, Q. T., Lu, Y., 2014b. Observed water current and transport through Qiongzhou Strait during August 2010. Chin. J. Oceanol. Limnol. 32 (2), 703-708, http://dx.doi.org/10.1007/s00343-014-3159-6.
  • [57] Waniek, J. J., 2003. The role of physical forcing in initiation of spring blooms in the northeast Atlantic. J. Mar. Syst. 39 (1-2), 57-82, http://dx.doi.org/10.1016/S0924-7963(02)00248-8.
  • [58] Woodson, C. B., Eerkes-Medrano, D. I., Flores-Morales, A., Foley, M. M., Henkel, S. K., Hessing-Lewis, M., Jacinto, D., Needles, L., Nishizaki, M. T., O'Leary, J., Ostrander, C. E., Pespeni, M., Schwager, K. B., Tyburczy, J. A., Weersing, K. A., Kirincich, A. R., Barth, J. A., McManus, M. A., Washburn, L., 2007. Local diurnal upwelling driven by sea breezes in northern Monterey Bay. Cont. Shelf. Res. 27 (18), 2289-2302, http://dx.doi.org/10.1016/j.csr.2007.05.014.
  • [59] Wu, M. L., Wang, Y. S., 2007. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuar. Coast. Shelf Sci. 72 (4), 732-742, http://dx.doi.org/10.1016/j.ecss.2006.11.032.
  • [60] Yokomizo, H., Botsford, L. W., Holland, M. D., Lawrence, C. A., Hastings, A., 2010. Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling. Theor. Ecol. -Neth. 3 (1), 53-63, http://dx.doi.org/10.1007/s12080-009-0053-5.
  • [61] Yu, W. Q., 1987. A preliminary approach of the upwelling for the northern South China Sea. Mar. Sci. 6, 7-10.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50cea104-af9b-42b0-ba86-8df71103bc8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.