PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of the Cooling Rate on Damping Characteristics of the ZnAl4Cu1 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of damping coefficient tests in the ZnAl4Cu1 alloy (ZL5). The damping coefficient has been calculated on the basis of specimen measurements obtained with the use of the signal echo method. The method consists in passing the ultrasonic wave through the tested material. The ultrasonic wave from a transmitting and receiving head passes through a specimen, bounces off its bottom surface and comes back to the measuring head in the form of a signal echo. Difference in the signal strength between the first and the second echo in relation to the distance travelled by the ultrasound wave is a measure of the material’s damping characteristics. The specimens were cast into three molds made of different materials, i.e. green sand, plaster and metal. Thermophysical properties of these materials are different what affecting the rate of heat absorption from the cast. Three series of specimens have been obtained which cooled at different rates. The specimens were then subjected to ultrasound and microscopic tests to assess the alloy structure. The internal alloy structure affects its damping properties to a great extent.
Rocznik
Strony
58--63
Opis fizyczny
Bibliogr. 18 poz., fot., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta St., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta St., 30-059 Krakow, Poland
Bibliografia
  • 1. Ritchie I.G. & Pan Z.-L. (1991). High damping metals and alloys. Metallurgical Transactions A, 22, 607–616. Doi: https://doi.org/10.1007/BF02670281.
  • 2. Ritchie I.G., Pan Z.-L. & Goodwin F.E. (1991). Characterization of the damping properties of die-cast zinc-aluminum alloys. Metallurgical Transactions A, 22, 617–622. Doi: https://doi.org/10.1007/BF02670282.
  • 3. Rzadkosz S. (1995). Wpływ składu chemicznego i przemian fazowych na właściwości tłumiące i mechaniczne stopów z układu aluminium – cynk. Rozprawy i Monografie. Kraków: Wydawnictwa AGH.
  • 4. Krajewski W.K. (2013). Stopy cynku z aluminium. Rodzaje, właściwości, zastosowanie. Kraków: Wydawnictwo Naukowe AKAPIT.
  • 5. Piwowarski G., Buraś J. & Szucki M. (2017). Influence of AlTi3C0.15 modification treatment on damping properties of ZnAl10 alloy. China Foundry, 14(4), 292–296. Doi: https://doi.org/10.1007/s41230-017-7070-6.
  • 6. Krajewski W.K., Buraś J., Krajewski P.K. & Piwowarski G. (2015). Ultrasound wave attenuation of grain refined high-zinc aluminium sand-cast alloys. Archives of Foundry Engineering, 15(2), 51–54. Doi: https://doi.org/10.1515/afe-2015-0037.
  • 7. Krajewski W.K., Haberl-Faerber K., Buras J. & Krajewski P.K. (2012). Damping properties vs. Structure fineness of the high--zinc aluminum alloys. Archives of Foundry Engineering, 12(3), 63–66. Doi: https://doi.org/10.2478/v10266-012-0083-0.
  • 8. Lelito J., Żak P.L., Gracz B., Szucki M., Kalisz D., Malinowski P., Suchy J.S. & Krajewski W.K. (2015). Determination of substrate log-normal distribution in the AZ91/SiCp composite. Metalurgija, 54(1), 204–206.
  • 9. Górny M. & Sikora G. (2015). Effect of titanium addition and cooling rate on primary α(Al) grains and tensile properties of Al-Cu Alloy. Journal of Materials Engineering and Performance, 24(3), 1150–1156. Doi: https://doi.org/10.1007/s11665-014-1380-2.
  • 10. Shabestari S.G. & Malekan M. (2005). Thermal analysis study of the effect of the cooling rate on the mictrostructure and solidification parameters of 319 aluminum alloy. Canadian Metallurgical Quarterly, 44(3), 305–312. Doi: https://doi.org/10.1179/000844305794409409.
  • 11. Osório W.R., Freire C.M. & Garcia A. (2005). The effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys. Journal of Alloys and Compounds, 397, 179–191. Doi: https://doi.org/10.1016/j.jallcom.2005.01.035.
  • 12. Osório W.R., Freire C.M.A. & Garcia A. (2005). Dendritic solidification microstructure affecting mechanical and corrosion properties of a Zn4Al alloy. Journal of Materials Science, 40, 4493–4499. Doi: https://doi.org/10.1007/s10853-005-0852-z.
  • 13. Osório W.R., Spinelli J.E., Cheung N. & Garcia A. (2006). Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al-10 wt% Sn and Al-20 wt% Zn alloys. Materials Science and Engineering A, 420, 179–186. Doi: https://doi.org/10.1016/j.msea.2006.01.058.
  • 14. Lachowicz M.M., Leśniewski T., Lachowicz M.B. & Jasionowski R. (2020). Tribological wear of as cast Zn-4Al alloy cooled at various rates from the eutectoid transformation temperature. Archives of Foundry Engineering, 20(4), 108–114. Doi: https://doi.org/10.24425/afe.2020.133356.
  • 15. Savaşkan T., Pürçek G. & Hekimoğlu A.P. (2003). Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys. Tribology Letters, 15(3), 257–263. Doi: https://doi.org/10.1023/A:1024817304351.
  • 16. Deputat J. (1979). Badania ultradźwiękowe. Podstawy. Gliwice: Instytut Metalurgii Żelaza.
  • 17. Deputat J., Mackiewicz S. & Szelążek J. (2007). Problemy i techniki nieniszczących badań materiałów: wybrane wykłady. Warszawa: Biuro Gamma.
  • 18. Petzow G. (1999). Metallographic Etching. Techniques for Metallography, Ceramography, Plastographyk. 2nd Ed. ASM International.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50c6aadf-24d0-4017-be39-24e2aba518ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.