PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indications of HP events in the volcanosedimentary succession of the Orlica–Śnieżnik Dome, NE Bohemian Massif: data from a marble-amphibolite interface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A volcanosedimentary succession of the Młynowiec-Stronie Group (MSG) in the Orlica–Śnieżnik Dome (OSD), the Sudetes, NE Bohemian Massif underwent multiple folding and shearing during the Variscan Orogeny. In the sheared domains, there are less deformed pods in which rocks preserve better records of metamorphic events prior to the regional temperature peak. In one such pod, near Gniewoszów on the western limb of the dome, marbles enclosed by massive amphibolites occur. In these rocks, zoned plagioclase with actinolite and epidote inclusions and zoned amphibole grains allowed recognition of three mineral assemblages and three P-T stages at: (1) 310°C/3–4 kbar, (2) 480–500°C/10.5 kbar, (3) 500–530°C/6–6.5 kbar, based on isopleth intersections and checked against conventional thermobarometry. These define a steep clockwise P-T path and a geothermal gradient of 17°C/km before peak conditions were attained, which suggests subduction of the metavolcano-sedimentary rocks (Stronie Formation of the MSG) on the western limb of the OSD, with a transient yet discrete higher pressure episode. Mineral relicts capable of demonstrating a higher pressure event are scarce in the supracrustal rocks of the dome, mainly because they became more thoroughly equilibrated and obliterated during the temperature peak at mid-amphibolite facies conditions and the subsequent ubiquitous greenschist facies overprint.
Rocznik
Strony
435--449
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Center in Wrocław, Podwale 75, 50-449 Wrocław, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Center in Wrocław, Podwale 75, 50-449 Wrocław, Poland
Bibliografia
  • 1. Ahn, J.H., Cho, M., 1998. Submicroscopic alteration of hornblende in the amphibolitic schists, northwestern Okchon metamorphic belt. Geosciences Journal, 2: 165-174.
  • 2. Anczkiewicz, R., Szczepański, J., Mazur, S., Storey, C., Crowley, Q., Villa, I.M., Thirlwall, M.F., Jeffries, T.E., 2007. Lu-Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos, 95: 363-380.
  • 3. Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fo2 on the Al-in-hornblende barometer. American Mineralogist, 80: 549-559.
  • 4. Apted, M.J., Liou, J.G., 1983. Phase relations among greenschist, epidote-amphibolite, and amphibolite in a basaltic system. American Journal of Science, 283: 328-354.
  • 5. Baziotis, I., Proyer, A., Mposkos, E., Marsellos, A., Leontakianakos, G., 2014. Amphibole zonation as a tool for tracing metamorphic histories: examples from Lavrion and Penteli metamorphic core complexes. EGU General Assembly Conference Abstracts, 16: 835.
  • 6. Bhadra, S., Bhattacharya, A., 2007. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92: 491-502.
  • 7. Berman, R.G., 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3- Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29: 445-522.
  • 8. Brandelik, A., 2009. CALCMIN-an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Computers and Geosciences, 35: 1540-1551.
  • 9. Bröcker, M., Klemd, R., Cosca, M., Brock, W., Larionov, A.N., Rodionov, N., 2009. The timing of eclogite facies metamorphism and migmatization in the Orlica-Śnieżnik complex, Bohemian Massif: constraints from a multimethod geochronological study. Journal of Metamorphic Geology, 27: 385-403.
  • 10. Brueckner, H.K., Medaris, L.G., Bakun-Czubarow, N., 1991. Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neues Jahrbuch fur Mineralogie Abhandlungen, 163: 169-196.
  • 11. Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks. Springer.
  • 12. Capitani, C.D., Petrakakis, K., 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, 95: 1006-1016.
  • 13. Chopin, F., Schulmann, K., Skrzypek, E., Lehmann, J., Dujardin, J. R., Martelat, J. E., Lexa, O., Corsini, M., Edel, J.B., Štípská, P., Pitra, P., 2012. Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics, 31: TC1013, doi: 10.1029/2011TC002951
  • 14. Ernst, W.G., 1979. Coexisting sodic and calcific amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole. Mineralogical Magazine, 43: 269-278.
  • 15. Ernst, W.G., Liu, J., 1998. Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB - a semiquantitative thermobarometer. American Mineralogist, 83: 952-969.
  • 16. Esawi, E.K., 2004. AMPH-CLASS: an Excel spreadsheet for the classification and nomenclature of amphiboles based on the 1997 recommendations of the International Mineralogical Association. Computers and Geosciences, 30: 753-760.
  • 17. Faryad, S.W., Kachlík, V., 2013. New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31: 63-82.
  • 18. Gerya, T.V., Perchuk, L.L., Triboulet, C., Audren, C., Sez'ko, A.I., 1997. Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology, 5: 503-533.
  • 19. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97: 2031-2048.
  • 20. Hoisch, T.D., 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+ plagioclase+garnet. Contributions to Mineralogy and Petrology, 104: 225-234.
  • 21. Holland, T., Powell, R., 1992. Plagioclase feldspars: activity-composition relations based upon Darken's quadratic formalism and Landau theory. American Mineralogist, 77: 53-61.
  • 22. Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116: 433-447.
  • 23. Hunt, J.A., Kerrick, D.M., 1977. The stability of sphene; experimental redetermination and geologic implications. Geochimica et Cosmochimica Acta, 41: 279-288.
  • 24. Ilnicki, S., 2013. Metabazyty pasma Nového Města (in Polish). AM Monograph, 5: 1-203.
  • 25. Ilnicki, S., Szczepański, J., Pin, C., 2013. From back-arc to rifted margin: Geochemical and Nd isotopic records in Neoproterozoic?-Cambrian metabasites of the Bystrzyckie and Orlickie Mountains (Sudetes, SW Poland). Gondwana Research, 23: 1104-1121.
  • 26. Jastrzębski, M., 2009. A Variscan continental collision of the West Sudetes and the Brunovistulian terrane: a contribution from structural and metamorphic record of the Stronie Formation, the Orlica-Śnieżnik Dome, SW Poland. International Journal of Earth Sciences, 98: 1901-1923.
  • 27. Jastrzębski, M., 2012. New insights into the polyphase evolution of the Variscan suture zone: evidence from the Staré Město Belt, NE Bohemian Massif. Geological Magazine, 149: 945-963.
  • 28. Jastrzębski, M., Budzyń, B., Stawikowski, W., 2015a. Structural, metamorphic and geochronological record in the Goszów quartzites of the Orlica-Śnieżnik Dome (SW Poland): implications for the polyphase Variscan tectonometamorphism of the Saxothuringian terrane. Geological Journal, doi: 10.1002/gj.2647.
  • 29. Jastrzębski, M., Żelaźniewicz, A., Murtezi, M., Larionov, A. N., Sergeev, S., 2015b. The Moldanubian Thrust Zone - a terrane boundary in the Central European Variscides refined based on lithostratigraphy and U-Pb zircon geochronology. Lithos, 220: 116-132.
  • 30. Koszela, S.K., 1997. Petrogenesis of marbles from the south-eastern part of Śnieżnik Metamorphic Massif (Sudetes) (in Polish with English summary). Geologia Sudetica, 30: 59-115.
  • 31. Kozdrój, W., 1990. Szczegółowa mapa geologiczna Sudetów, ark. Poręba. Państwowy Instytut Geologiczny, Warszawa.
  • 32. Kryza, R., Pin, C., Vielzeuf, D., 1996. High-pressure granulites from the Sudetes (south-west Poland): evidence of crustal subduction and collisional thickening in the Variscan Belt. Journal of Metamorphic Geology, 14: 531-546.
  • 33. Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C, Whittaker, E.J., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. American Mineralogist, 89: 883-887.
  • 34. Laird, J., Albee, A.L., 1981. Pressure, temperature, and time indicators in mafic schist; their application to reconstructing the polymetamorphic history of Vermont. American Journal of Science, 281: 127-175.
  • 35. Matte, P., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics, 177: 151-170.
  • 36. Mazur, S., Aleksandrowski, P., Szczepański, J., 2005. The presumed Teplá-Barrandian/Moldanubian terrane boundary in the Orlica Mountains (Sudetes, Bohemian Massif): structural and petrological characteristics. Lithos, 82: 85-112.
  • 37. Mazur, S., Turniak, K., Szczepański, J., McNaughton, N.J., 2015. Vestiges of Saxothuringian crust in the Central Sudetes, Bohemian Massif: Zircon evidence of a recycled subducted slab provenance. Gondwana Research, 27: 825-839.
  • 38. Murtezi, M., 2006. The acid metavolcani crocks of the Orlica-Śnieżnik Dome Sudetes: their origin and tectono-metamorphic evolution. Geologia Sudetica, 38: 1-38.
  • 39. Najorka, J., Gottschalk, M., 2003. Crystal chemistry of tremolite-tschermakite solid solutions. Physics and Chemistry of Minerals, 30: 108-124.
  • 40. Nowak, I., Żelaźniewicz, A., 2006. Geochemistry of metabasites in the Stronie Group and Nové Město Group, the Orlica-Śnieżnik Dome, West Sudetes. Geolines, 20: 102-103.
  • 41. Papike, J.J., Bence, A.E., Lindsley, D.H., 1974. Mare basalts from the Taurus-Littrow region of the moon. In: Lunar and Planetary Science Conference Proceedings, 5: 471-504.
  • 42. Perraki, M., Mposkos, E., Hoinkes, G., Orfanoudaki, A., 2002. Amphibole zonation in glaucophane schists, epidote-amphibolites and albite-gneisses as a guide to the metamorphic evolution of the Pelagonian Zone, NE Thessaly, Greece. Geologica Carpathica, 53: 164-165.
  • 43. Plyusnina, L.P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology, 80: 140-146.
  • 44. Poli, S., 1991. Reacion spaces and PT paths: from amphibole eclogite to greenschist facies in the Austroalpine domain (Oetztal Complex). Contributions to Mineralogy and Petrology, 106: 399-416.
  • 45. Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160: 45-66.
  • 46. Rötzler, J., Carswell, D.A., Gerstenberger, H., Haase, G., 1999. Transitional blueschist-epidote amphibolite facies metamorphism in the Frankenberg massif, Germany, and geotectonic implications. Journal of Metamorphic Geology, 17: 109–125.
  • 47. Schumacher, J.C., 2007. Metamorphic amphiboles: composition and coexistence. Reviews in Mineralogy and Geochemistry, 67: 359-416.
  • 46. Rotzler, J., Carswell, D.A., Gerstenberger, H., Haase, G., 1999. Transitional blueschist-epidote amphibolite facies metamorphism in the Frankenberg massif, Germany, and geotectonic implications. Journal of Metamorphic Geology, 17: 109-125.
  • 48. Schulmann, K., Gayer, R., 2000. A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. Journal of the Geological Society, 157: 401-416.
  • 49. Skácel, J., 1989. Intersection of the Lugian boundary fault and the Nyznerov dislocation zone between Vapienna and Javornik in Silesia (Czech Republic). Acta Universitatis Palackianae, Olomoucensis, 95: 31-45.
  • 50. Skrzypek, E., Schulmann, K., Štípská, P., Chopin, F., Lehmann, J., Lexa, O., Haloda, J., 2011a. Tectono-metamorphic history recorded in garnet porphyroblasts: insights from thermodynamic modelling and electron backscatter diffraction analysis of inclusion trails. Journal of Metamorphic Geology, 29: 473-496.
  • 51. Skrzypek, E., Štípská, P., Schulmann, K., Lexa, O., Lexova, M., 2011b. Prograde and retrograde metamorphic fabrics-a key for understanding burial and exhumation in orogens (Bohemian Massif). Journal of Metamorphic Geology, 29: 451-472.
  • 52. Skrzypek, E., Lehmann, J., Szczepański, J., Anczkiewicz, R., Štípská, P., Schulmann, K., Kroner, A., Białek, D., 2014. Time-scale of deformation and intertectonic phases revealed by P-T-D-t relationships in the orogenic middle crust of the Orlica-Śnieżnik Dome, Polish/Czech Central Sudetes. Journal of Metamorphic Geology, 32: 981-1003.
  • 53. Štípská, P., Chopin, F., Skrzypek, E., Schulmann, K., Pitra, P., Lexa, O., Žáčková, E., 2012. The juxtaposition of eclogite and mid-crustal rocks in the Orlica-Śnieżnik Dome, Bohemian Massif. Journal of Metamorphic Geology, 30: 213-234.
  • 54. Strens, R.G.J., 1965. Stability and relations of the Al-Fe epidotes. Mineralogical Magazine, 35: 464-475.
  • 55. Szczepański, J., 2010. Provenance and tectonometamorphic evolution of the supracrustal series from the Bystrzyckie Mountains crystalline Massif. Wrocławska Drukarnia Naukowa PAN, Wrocław.
  • 56. Szczepański, J., Ilnicki, S., 2014. Stop 1.1. Metabasalts of the western part of the OSD. Geologia Sudetica, 42: 125-126.
  • 57. Triboulet, C., 1992. The Na-Ca amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. An empirical calibration. Journal of Metamorphic Geology, 10: 545-556.
  • 58. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 59. Wu, C.M., Zhao, G., 2006. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase- quartz (GMPQ) geobarometer for metapelitic assemblages. Journal of Petrology, 47: 2357-2368.
  • 60. Zenk, M., Schulz, B., 2004. Zoned Ca-amphiboles and related PT evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68: 769-786.
  • 61. Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A., Żaba, J., 2009. More evidence on Neoproterozoic terranes in geological quarterly Southern Poland and southeastern Romania. Geological Quarterly, 53 (1): 93-124.
  • 62. Żelaźniewicz, A., Kromuszczyńska, O., Biegała, N., 2013. Quartz c-axis fabrics in constrictionally strained orthogneisses: implications for the evolution of the Orlica-Śnieżnik Dome, the Sudetes, Poland. Acta Geologica Polonica, 63: 697-722.
  • 63. Żelaźniewicz, A., Budzyń, B., Ilnicki, S., Jastrzębski, M., Murtezi, M., Redlińska-Marczyńska, A., Szczepański, J., 2014. The CETeG 2014 excursion to crystalline basement of the Orlica-Śnieżnik Dome, the Sudetes. Geologia Sudetica, 42: 105-123.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50c2de90-07aa-4e3a-8519-140768fd1f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.