PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reverse flotation of iron ore using amphoteric surfactant: 2-((2(decyloxy)ethyl)amino)lauric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2-((2-(decyloxy)ethyl)amino)lauric acid (C10H21CH(NH(CH2)3OC10H21)COOH, (LDEA), a novel amphoteric surfactant, has been first utilized as the collector for on-site the reverse flotation of Anqian mixed magnetic concentrates. The separation performances were investigated systematically by flotation conditioning tests, open-circuit flowsheet experiment, and locked cycle flowsheet test. The flotation condition test's results showed that the optimal roughing conditions were pulp pH of 10, starch dosage 1000 g/Mg, and LDEA dosage of 500 g/Mg at 25 °C. Under the optimized flotation conditions, through one roughing - three scavengings locked cycle flowsheet, the iron concentrate with a total iron grade of 68.08% and recovery of 88.20% was obtained. In contrast, the iron grade of the tailings was only 12.32%. Compared with the flotation results of anionic commercial surfactant RA-715 used as the collector, the LDEA has a better separation performance. The iron grade and recovery increased by 0.07% and 0.86% in the iron concentrate, and the grade of the tailings decreased 3.72%, respectively. Besides, the LDEA possesses more advantages, such as a simple flotation process, no activator (CaO) addition, lower collector consumption, and lower pulp temperature. The study revealed that the novel amphoteric surfactant LDEA was an effective flotation collector with good collecting and separation ability on natural iron ores at a comparatively lower temperature.
Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 29 poz., rys. kolor.
Twórcy
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
  • State Key Laboratory of Mineral Processing, Beijing 100160, PR China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
autor
  • BGRIMM Technology Group, Beijing 100160, PR China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
Bibliografia
  • ARAUJO, A.C., VIANA, P.R.M., PERES, A.E.C., 2005. Reagents in iron ores flotation. Minerals Engineering, 18(2), 219-224.
  • CAO, Z., ZHANG, Y., CAO, Y., 2013. Reverse flotation of quartz from magnetite ore with modified sodium oleate. Miner Process Extr M, 34(5), 320-330.
  • FILIPPOV, L.O., FILIPPOVA, I.V., SEVEROV, V.V., 2010. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Minerals Engineering, 23(2), 91-98.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127, 62-69.
  • FUERSTENAU, D., PRADIP, C., 1984. Mineral flotation with hydroxamate collectors, In Reagents in the Minerals Industry. IMM London, pp. 161-168.
  • FUERSTENAU, M., PALMER, B., 1976. Anionic flotation of oxides and silicates. Flotation--A. M. Gaudin Memorial.GREENWOOD, N.N., EARNSHAW, A., 2012. Chemistry of the Elements. Elsevier, Oxford.
  • GUO, W.-D., ZHU, Y.-M., WANG, P., LI, W., HAN, Y.-X., LI, Y.-J., 2016. Experimental Study on a New Amide -Carboxylic Acid Collector DWD-1 Used in Reverse Flotation of Iron. Conservation and Utilization of Mineral Resources, (3), 22-25.
  • JIANG, W.-L., XU, H.-F., 2017. Treatment and Recycling of the Process Water in Iron Ore Flotation of Yuanjiacun Iron Mine. Journal of Chemistry, 2017.
  • LEJA, J., 2012. Surface chemistry of froth flotation. Springer Science & Business Media.
  • LI, G., 2018. The Chinese Iron Ore Deposits and Ore Production, In Iron Ores and Iron Oxide Materials. IntechOpen, London.
  • LIMA, N.P., VALADÃO, G.E., PERES, A.E., 2013. Effect of amine and starch dosages on the reverse cationic flotation of an iron ore. Minerals Engineering, 45, 180-184.
  • LIU, W., LIU, W., WANG, X., WEI, D., WANG, B., 2016. Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite. Separation and Purification Technology, 162, 188-194.
  • LIU, W.-G., WEI, D.-Z., WANG, B.-Y., FANG, P., WANG, X.-H., CUI, B.-Y., 2009. A new collector used for flotation of oxide minerals. Transactions of Nonferrous Metals Society of China, 19(5), 1326-1330.
  • LUO, B., ZHU, Y., SUN, C., LI, Y., HAN, Y., 2015. Flotation and adsorption of a new collector α-Bromodecanoic acid on 83 Physicochem. Probl. Miner. Process., 57(3), 2021, 73-83 quartz surface. Minerals Engineering, 77, 86-92.
  • LUO, B., ZHU, Y., SUN, C., LI, Y., HAN, Y., 2018. The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy) ethyl) amino) lauric acid on quartz surface. Minerals Engineering, 117, 121-126.
  • LUO, B.B., ZHU, Y.M., SUN, C.Y., LI, Y.J., HAN, Y.X., 2019. Molecular dynamic simulations study of 2-((2-(decyloxy)ethyl)amino)lauric acid adsorption on the alpha-quartz (101) surface. Physicochem Probl Mi, 55(5), 1209-1216.
  • LUO, X., WANG, Y., WEN, S., MA, M., SUN, C., YIN, W., MA, Y., 2016a. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. International Journal of Mineral Processing, 152, 1-6.
  • LUO, X.-M., YIN, W.-Z., WANG, Y.-F., SUN, C.-Y., MA, Y.-Q., LIU, J., 2016b. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector. J Cent South Univ, 23(3), 529-534.
  • MA, M., 2012. Froth flotation of iron ores. International Journal of Mining Engineering and Mineral Processing, 1(2), 56-61.
  • MEI, J., HE, R.-A., YANG, W., 2009. Design, Synthesis and Application of KS -Ⅱ Flotation Reagents for Iron Ores. Mining Engineering, 7(5), 26-28.
  • NAKHAEI, F., IRANNAJAD, M., 2017. Reagents types in flotation of iron oxide minerals: A review. Miner Process Extr M, 39(2), 89-124.
  • QUAST, K., 2006. Flotation of hematite using C6–C18 saturated fatty acids. Minerals Engineering, 19(6-8), 582-597.
  • SAYILGAN, A., AROL, A.I., 2004. Effect of carbonate alkalinity on flotation behavior of quartz. International Journal of Mineral Processing, 74(1), 233-238.
  • SHEN, H., HUANG, X., 2005. A review of the development in iron ore processing from 2000 to 2004. Metal Mine Engineering, 25, 26-30.
  • WENG, X., MEI, G., ZHAO, T., ZHU, Y., 2013. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Separation and Purification Technology, 103, 187-194.
  • WILLS, B.A., FINCH, J., 2015. Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann.
  • ZHANG, Q., ZHAO, X., LU, H., NI, T., LI, Y., 2017. Waste energy recovery and energy efficiency improvement in China's iron and steel industry. Applied energy, 191, 502-520.
  • ZHU, Y., LUO, B., SUN, C., LI, Y., HAN, Y., 2015. Influence of bromine modification on collecting property of lauric acid. Minerals Engineering, 79, 24-30.
  • ZHU, Y., LUO, B., SUN, C., LIU, J., SUN, H., LI, Y., HAN, Y., 2016. Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (1 0 1) surface. Minerals Engineering, 92, 72-77
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50bafe4a-3a36-4baf-9bd0-0d283a3354d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.