PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using Ion Exchange Process in Removal of Selected Organic Pollution from Aqueous Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surfactant and phenol were removed using AMBERLITE IRA 900 Cl ion-exchange resin, which is a strong alkali. In the process, the tests were carried out under non-flow conditions, the effect of contact time and ionite dose on the surfactant and phenol exchange was determined. The tests under the through-flow conditions were realized in three consecutive cycles, preceded by regeneration and rinsing. The obtained results served for determination of ion-exchange capabilities of the studied ionite. The usable ion-exchange capabilities of the resin obtained after the second and third ionite operation cycle were lower by about 10% (surfactant) and 14.29-17.86% (phenol) than those after the first cycle. It shows that the process of sorption occurred simultaneously with the ion-exchange process.
Słowa kluczowe
Rocznik
Strony
136--142
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Rzeszów University of Technology, The Faculty of Civil and Environment Engineering and Architecture, Department of Water Purification and Protection, ul. Poznańska 2, 35-084 Rzeszów, Poland
autor
  • Rzeszów University of Technology, The Faculty of Civil and Environment Engineering and Architecture, Department of Water Purification and Protection, ul. Poznańska 2, 35-084 Rzeszów, Poland
  • Rzeszów University of Technology, The Faculty of Civil and Environment Engineering and Architecture, Department of Water Purification and Protection, ul. Poznańska 2, 35-084 Rzeszów, Poland
Bibliografia
  • 1. Abburi, K. 2003. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD – 16 resin. Journal of Hazardous Materials, 105, 143-156.
  • 2. Basar, C.A., Karagunduz, A., Cakici, A., Keskinler, B. 2004. Removal of surfactants by powdered activated carbon and microfiltration. Wat. Res., 38, 2117-2124.
  • 3. Cserhati, T., Forgacs, E., Oros, G. 2002. Biological activity and environmental impact of anionic surfactants. Environmet International, 28, 337-348.
  • 4. Dudzik, M., Werle, S. 2015. Phenol sorption from water solution onto conventional and unconventional sorbents . Inżynieria i Ochrona Środowiska, 18(1) 67-81.
  • 5. Guidelines for Drinking – water Quality 2017. World Health Organization, Genewa.
  • 6. Kabsch-Korbutowicz, M. 2013 Application of Ion Exchange to Natural Organic Matter Removal from Water. Ochrona Srodowiska, Vol. 35, No. 1, 11-18.
  • 7. Kaleta, J. 2006. Removal of phenol aqueous solution by adsorption. Canadian Journal of Civil Engineering, 33, 546-551.
  • 8. Kaleta, J. 2008. Removal of surfactant substances from aqueous solution by adsorption. VIII Międzynarodowa Konferencja Naukowo-Techniczna “Zaopatrzenie w wodę, jakość i ochrona wód”, Gniezno, 505-514.
  • 9. Kaleta, J., Papciak, D., Puszkarewicz, A. 2013. Assessment of Usability of Bentonite Clays for Removing Phenol from Water Solutions, Annual Set the Environment Protection, 15, 2352-2368.
  • 10. Kapica, J., Kaleńczuk, R.J., Morawski, A.W. 2002. Studies of influence specific surface area on adsorption of phenol from water by activated carbon CWZ. Mat. Konf. „Węgiel aktywny w ochronie środowiska” Wyd. Pol. Częstochowskiej, Częstochowa, 178-187.
  • 11. Kida, M., Koszelnik, P. 2015. Environmental fate of selected micropollutants. Journal of Civil Engineering, Environment and Architecture, Rzeszów, 62(1) 279-298.
  • 12. Kowalska, I. 2008. Separation of Surface Active Agents from Water Solutions Using Polymer Ultrafiltration Membranes. Annual Set the Environment Protection, 10, 593-604.
  • 13. Kowalska, I. 2009. Anionic Surfactant Removal by Ion Exchange. Ochrona Środowiska 2009, Vol. 31, No. 1, pp. 25-29.
  • 14. Lorenc-Grabowska, E., Gryglewicz, G. 2002. Adsorption of chloro- and nitrophenols from aqueous solutions on spherical activated carbons. Mat. Konf. „Węgiel aktywny w ochronie środowiska” Wyd. Pol. Częstochowskiej, Częstochowa, 195-205.
  • 15. Mołczan, M., Biłyk, A. 2006. Use on Anion-Exchange MIEX Resin in the Treatment of Natural Water with High Colored Matter Contend. Ochrona Środowiska vol.28, no 2, 23-26.
  • 16. Nayak, P.S., Singh, B.K. 2007. Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination 207, 71-79.
  • 17. Oghenejoboh, K.M, Otuagoma, S.O., Ohimor, E.O. 2016. Application of cassava peels activated carbon in the treatment of oil refinery wastewater – a comparative analysis. Journal of Ecological Engineering, 17, 52-58.
  • 18. Piekutin, J. 2011. Water pollution with oil products. Annual Set the Environment Protection, 13, 1903-1914.
  • 19. Puszkarewicz, A., Kaleta, J., Papciak, D. 2015. Removal of phenol in adsorption proces. Journal of Civil Engineering, Environment and Architecture, 62(3), 35-362.
  • 20. Sarkowicz M., Das, M. 2001. Design and performance of fixed bed adsorption from treatment of malachite green as single solute as well as in bisolute composition. Annual Set the Environment Protection, 3, 129-237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50b2d7a6-6178-4451-9965-3065130bb677
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.