PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activated biocarbons obtained from post-fermentation residue as potential adsorbents of organic pollutants from the liquid chase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
A series of new synthetic carbonaceous adsorbents has been prepared via physical and chemical activation of residue of alcoholic fermentation of corn starch. Two different variants of thermal treatment procedure - microwave and conventional heating have been applied for preparing of the activated biocarbons. All the samples under investigation were characterised by elementary analysis, surface area measurements as well as determination of the number of surface functional groups. The electrokinetic properties of examined materials were studied using potentiometric titration and electrophoresis methods, which enabled determination of the surface charge density and zeta potential of activated biocarbon particles. Moreover, sorption properties of the carbonaceous materials towards two organic dyes - methylene blue and malachite green were tested. The final products were activated biocarbons of medium developed surface area ranging from 21 to 879 m2/g, showing acidic character of the surface and various content of surface functional groups. More favourable textural parameters as well as sorption properties toward both organic dyes were revealed by chemically activated samples. The obtained results indicated also considerable effect of adsorbed dye molecules on the structure of electrical double layer formed at the solid/liquid interface.
Rocznik
Strony
art. no. 146357
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
autor
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Radiochemistry and Environmental Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Radiochemistry and Environmental Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
Bibliografia
  • BANDOSZ, T.J., 2006. Activated Carbon Surfaces in Environmental Remediation.Elsevier Books.
  • BAZAN-WOZNIAK, A., PIETRZAK, R., 2020. Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem. Eng. J. 393, 124785.
  • BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 152, 211-222.
  • BOEHM, H.P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769.
  • BOTTANI, E. J., TASCÓN, M.D., 2008. Adsorption by carbons. Elsevier Ltd.
  • BOUHAMED, F., ELOUEAR, Z., BOUZID, J., OUDDANE, B., 2016. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 23, 15801–15806.
  • ÇEÇEN, F., AKTAŞ, Ö., 2011. Activated carbon for water and wastewater treatment: Integration of adsorption and biological treatment. Wiley‐VCH Verlag GmbH & Co. KGaA, Singapore.
  • HUNTER, R. J., 1981. Zeta potential in colloid science. Academic Press, New York.
  • ISSAKHOV, A., ALIMBEK, A., ZHANDAULET, Y., 2021. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. J. Cleaner. Prod. 282, 125239.
  • JANUSZ, W., 1994. Electrical double layer at the metal oxide/electrolyte interface in interfacial forces and fields: theory and applications. In: M. Decker (Ed.), Surfactant Science, vol. 85, chapter 4, New York.
  • JANUSZ, W., SKWAREK, E., 2021. Adsorption of the tartrate ions in the hydroxyapatite/aqueous solution of NaCl system. Materials. 14(11), 3039.
  • KAZMIERCZAK-RAZNA, J., KASPRZAK, D., WALKOWIAK, M., PIETRZAK, R., NOWICKI, P., 2021. N-doped sawdust-based activated biocarbons prepared by microwave assisted heat treatment as potential electrode materials for supercapacitors. J. Wood Chem. Technol. 41(6), 307-320.
  • KAZMIERCZAK-RAZNA, J., PIETRZAK, R., NOWICKI, P., 2019. Synthesis of new carbon-nitrogen composites based on waste sweet drinks. Physicochem. Probl. Miner.Process. 55(6), 1366-1374.
  • KOŁODYŃSKA, D., KRUKOWSKA-BĄK, J., KAZMIERCZAK-RAZNA, J., PIETRZAK, R., 2017. Uptake of heavy metal ions from aqueous solutions by sorbents obtained from the spent ion exchange resins. Micropor. Mesopor. Mat. 244, 127-136.
  • MALAIKA, A., GERTIG, J., RECHNIA, P., MIKLASZEWSKA, A., KOZŁOWSKI, M., 2019. Studies on the coupled reaction of ethylbenzene dehydrogenation/nitrobenzene hydrogenation using activated carbon supported metal catalysts. Arab. J. Chem. 12, 4947-4956.
  • MARSH, H., RODRÍGUEZ-REINOSO, F., 2006. Activated Carbon. Elsevier, Oxford.
  • NOWICKI, P., PIETRZAK, R., WACHOWSKA, H., 2008. Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of brown coal. Energy Fuel 22, 4133-4138.
  • OHSHIMA, H., 1994. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interf. Sci. 168, 269-271.
  • OSTOLSKA, I., WIŚNIEWSKA. M., 2015. Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers. J. Hazard. Mat. 290, 69-77.
  • OSTOLSKA, I., WIŚNIEWSKA., M., 2014. Comparison of the influence of polyaspartic acid and polylysine functional groups on the mechanism of polymeric film formation at the Cr2O3 - aqueous solution interface. Appl. Surf. Sci. 311, 734-739.
  • RECHNIA-GORĄCY, P., MALAIKA, A., KOZŁOWSKI, M., 2020. Effective conversion of rapeseed oil to biodiesel fuel in the presence of basic activated carbon catalysts. Catal. Today. 357, 102-112.
  • SKWAREK, E., JANUSZ, W., STERNIK, D., 2014. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. J. Radioanal. Nucl. Chem. 299, 2027–2036.
  • STIEPANOW, B., I., 1980. Podstawy chemii i technologii barwników organicznych, Wydawnictwa Naukowo-Techniczne, Warszawa.
  • SZEWCZUK-KARPISZ, K., NOWICKI, P., SOKOŁOWSKA, Z., PIETRZAK, R., 2020. Hay-based activated biochars obtained using two different heating methods as effective low-cost sorbents: Solid surface characteristics, adsorptive properties and aggregation in the mixed Cu(II)/PAM system. Chemosphere, 250, 126312.
  • WAWRZKIEWICZ, M., POLSKA-ADACH, E., WIŚNIEWSKA, M., FIJAŁKOWSKA, G., GONCHARUK, O., 2019. Adsorptive removal of C.I. Direct Yellow 142 form textile baths using nanosized silica-titania oxide. Eur. Phys. J. Plus. 134, 108-117.
  • WAWRZKIEWICZ, M., WIŚNIEWSKA, M., WOŁOWICZ, A., GUN’KO, V. M., ZARKO, V. I., 2017. Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Micropor. Mesopor. Mat. 250, 128-147.
  • WIŚNIEWSKA, M., NOWICKI, P., SZEWCZUK-KARPISZ, K., GĘCA, M., JĘDRUCHNIEWICZ, K., OLESZCZUK, P., 2021. Simultaneous removal of toxic Pb(II) ions, poly(acrylic acid) and Triton X-100 from their mixed solution using engineered biochars obtained from horsetail herb precursor – Impact of post-activation treatment. Sep. Purif. Technol. 276, 119297.
  • WIŚNIEWSKA, M., WAWRZKIEWICZ, M., POLSKA-ADACH, E., FIJAŁKOWSKA, G., GONCHARUK, O., 2018. Nanosized silica-titanium oxide as potential adsorbent for C.I. Acid Yellow 219 dye removal from textile baths and wastewater. Appl. Nanosci. 8, 867-876.
  • WIŚNIEWSKA, M., WRZESIŃSKA, K., WAWRZKIEWICZ, M., CHIBOWSKI, S., URBAN, T., GONCHARUK, O., GUN’KO, V. M., 2020. Alumina-silica-titania adsorbent for hazardous azo and phtalocyanine dyes removal from textile baths and wastewaters – the impact of ionic surfactants. Physicochem. Probl. Min. Process. 56, 178-193.
  • WRÓBEL-IWANIEC, I., DÍEZ, N., Gryglewicz, G., 2015. Chitosan-based highly activated carbons for hydrogen storage. Int. J. Hydrogen Energy. 40(17), 5788-5796.
  • WU, L., SHANG, Z., WANG, H., WAN, W., GAO, X., LI, Z., KOBAYASHI, N., 2018. Production of activated carbon from walnut shell by CO2 activation in a fluidized bed reactor and its adsorption performance of copper ion. J. Mat. Cycles Waste. Manag. 20, 1676–1688.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50b0c3b8-0d8f-4399-a7eb-3a10a164f747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.