PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anodic growth of copper oxide nanostructures in glow discharge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Application of plasma glow discharge to copper oxide nanostructure growth is studied. The simplicity of the proposed technique may be beneficial for the development of new plasma reactors for large-scale production of diverse metal oxide nanostructures. Design/methodology/approach: Copper sample was placed on anode of a setup designed to ignite plasma glow discharge. The proposed approach allows eliminating the negative effects of ion bombardment, like sputtering and generation of defects on a surface of the growing nanostructures, but preserves the advantages of thermal growth. The growth process was explained in terms of thermal processes interaction occurring on a surface of the anode with the glow discharge plasma. Findings: Plasma treatment resulted in generation of reach and diverse nanostructures that was confirmed by SEM images. Nanowire-like, flower-like, anemone-like nanostructures and nanodisks composed into the nanoassemblies are observed; the nanostructures are associated with microbabbles on CuO layer. These findings allow concluding about the possible implementation of the proposed method in industry. Research limitations/implications: The main limitation is conditioned by the lack of heat supplied to the anode, and absence of independent control of the heat and ion fluxes; thus, the additional heater should be installed under the anode in order to expand the nomenclature of the nanospecies in the future studies. Practical implications: High-productivity plasma process in copper oxide nanostructures synthesis was confirmed in this research. It may be applied for field emitter and supercapacitor manufacturing. Originality/value: Oxide nanostructure synthesis is conducted by use of a simple and well-known glow discharge technique in order to expand the production yield and diversity of nanostructure obtained in the processes of thermal growth.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
Bibliografia
  • [1] O. Baranov, M. Košiček, G. Filipič, U. Cvelbar, A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures, Applied Surface Science 566 (2021) 150619. DOI: https://doi.org/10.1016/j.apsusc.2021.150619
  • [2] G. Kostyuk, V. Popov, Y. Shyrokyi, H. Yevsieienkova, Efficiency and performance of milling using cutting tools with plates of a new class, in: V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, P. Dasic (eds.), Advanced Manufacturing Processes II, InterPartner 2020, Lecture Notes in Mechanical Engineering, Springer, Cham, 2021. DOI: https://doi.org/10.1007/978-3-030-68014-5_58
  • [3] M. Szindler, M.M Szindler, L.A. Dobrzański, T. Jung, NiO nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications, Archives of Materials Science and Engineering 92/1 (2018) 15-21. DOI: https://doi.org/10.5604/01.3001.0012.5507
  • [4] K. Szmajnta, M.M. Szindler, M. Szindler, Synthesis and magnetic properties of Fe2O3 nanoparticles for hyperthermia application, Archives of Materials Science and Engineering 109/2 (2021) 80-85. DOI: https://doi.org/10.5604/01.3001.0015.2627
  • [5] G. Machalska, M. Noworolnik, M. Szindler, W. Sitek, R. Babilas, Titanium dioxide nanoparticles and thin films deposited by an atomization method, Archives of Materials Science and Engineering 100/1-2 (2019) 34- 41. DOI: https://doi.org/10.5604/01.3001.0013.6000
  • [6] L.A. Dobrzański, B. Nieradka-Buczek, Transparent conductive nanocomposite layers with polymer matrix and silver nanowires reinforcement, Archives of Materials Science and Engineering 93/2 (2018) 59-84. DOI: https://doi.org/10.5604/01.3001.0012.7355
  • [7] F. Fahma, I. Febiyanti, N. Lisdayana, I. W. Arnata, D. Sartika, Nanocellulose as a new sustainable material for various applications: a review, Archives of Materials Science and Engineering 109/2 (2021) 49-64. DOI: https://doi.org/10.5604/01.3001.0015.2624
  • [8] S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, V.I. Kleshch, J. Sainio, E.D. Obraztsova, S.N. Bokova, A.N. Obraztsov, E.I. Kauppinen, A Novel Method for Metal Oxide Nanowire Synthesis, Nanotechnology 20/16 (2009) 165603. DOI: https://doi.org/10.1088/0957-4484/20/16/165603
  • [9] L. Feng, H. Yan, H. Li, R. Zhang, Z. Li, R. Chi, S. Yang, Y. Ma, B. Fu, J. Liu, Excellent field emission properties of vertically oriented CuO nanowire films, AIP Advances 8/4 (2018) 045109. DOI: https://doi.org/10.1063/1.5022320
  • [10] D. Majumdar, S. Ghosh, Recent advancements of copper oxide-based nanomaterials for supercapacitor applications, Journal of Energy Storage 34 (2021) 101995. DOI: https://doi.org/10.1016/j.est.2020.101995
  • [11] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li, T. Yu, Multifunctional CuO Nanowire Devices: p-type Field Effect Transistors and CO Gas Sensors, Nanotechnology 20/8 (2009) 085203. DOI: https://doi.org/10.1088/0957-4484/20/8/085203
  • [12] C.W. Zou, W. Gao, Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures, Transactions on Electrical and Electronic Materials 11/1 (2010) 1-10. DOI: https://doi.org/10.4313/TEEM.2010.11.1.001
  • [13] Z.A. Duriagina, D.D. Ryzhak, V.V. Kulyk, T.L. Tepla, I.A. Lemishka, L.I. Bohun, Microstructure and electrochemical properties of the vanadium alloys after low-temperature nitrogen plasma treatment, Archives of Materials Science and Engineering 102/1 (2020) 5- 12. DOI: https://doi.org/10.5604/01.3001.0014.1451
  • [14] O.O. Baranov, J. Fang, A.E. Rider, S. Kumar, K. Ostrikov, Effect of ion current density on the properties of vacuum arc-deposited TiN coatings, IEEE Transactions on Plasma Science 41/12 (2013) 3640- 3644. DOI: https://doi.org/10.1109/TPS.2013.2286405
  • [15] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science 60 (2014) 208-337. DOI: https://doi.org/10.1016/j.pmatsci.2013.09.003
  • [16] M.J. Kim, S. Alvarez, T. Yan, V. Tadepalli, K.A. Fichthorn, B.J. Wiley, Modulating the Growth Rate, Aspect Ratio, and Yield of Copper Nanowires with Alkylamines, Chemistry of Materials 30/8 (2018) 2809-2818. DOI: https://doi.org/10.1021/acs.chemmater.8b00760
  • [17] G. Filipič, U. Cvelbar, Copper Oxide Nanowires: a Review of Growth, Nanotechnology 23/19 (2012) 194001. DOI: https://doi.org/10.1088/0957-4484/23/19/194001
  • [18] O. Baranov, G. Filipič, U. Cvelbar, Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size, Plasma Sources Science and Technology 28/8 (2019) 084002. DOI: https://doi.org/10.1088/1361-6595/aae12e
  • [19] Q. Cheng, W. Yan, L. Randeniya, F. Zhang, K. Ostrikov, Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing, Journal of Applied Physics 115 (2014) 124310. DOI: https://doi.org/10.1063/1.4869435
  • [20] A. Zúñiga, L. Fonseca, J.A. Souza, C. Rivaldo-Gomez, C.D. Pomar, D. Criado, Anomalous ferromagnetic behavior and size effects in CuO nanowires, Journal of Magnetism and Magnetic Materials 471 (2019) 77-81. DOI: https://doi.org/10.1016/j.jmmm.2018.09.048
  • [21] A. Jafari, S. Terohid, A. Kokabi, A. Moradiani, Electrical, structural, and photocatalytic properties of copper oxide nanowire, Journal of Chemical Research 44/7-8 (2020) 471-474. DOI: https://doi.org/10.1177/1747519819899068
  • [22] S.H. Mohamed, K.M. Al-Mokhtar, Characterization of Cu2O/CuO nanowire arrays synthesized by thermal method at various temperatures, Applied Physics A 124/7 (2018) 493. DOI: https://doi.org/10.1007/s00339-018-1914-9
  • [23] R. Sondors, J. Kosmaca, G. Kunakova, L. Jasulaneca, M.M. Ramma, R. Meija, E. Kauranens, M. Antsov, D. Erts, Size Distribution, Mechanical and Electrical Properties of CuO Nanowires Grown by Modified Thermal Oxidation Methods, Nanomaterials 10/6 (2020) 1051. DOI: https://doi.org/10.3390/nano10061051
  • [24] C.H. Xu, C.H. Wo, S.Q. Shi, Formation of CuO Nanowires on Cu Foil, Chemical Physics Letters 399/1-3 (2004) 62-66. DOI: https://doi.org/10.1016/j.cplett.2004.10.005
  • [25] I. Levchenko, M. Romanov, O. Baranov, M. Keidar, Ion deposition in a crossed E×B field system with vacuum arc plasma sources, Vacuum 72/3 (2003) 335-344. DOI: https://doi.org/10.1016/j.vacuum.2003.09.002
  • [26] O. Baranov, M. Romanov, Current distribution on the substrate in a vacuum arc deposition setup, Plasma Processes and Polymers 5/3 (2008) 256-262. DOI: https://doi.org/10.1002/ppap.200700160
  • [27] A. Kumar, A.K. Srivastava, P. Tiwari, R.V. Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods, Journal of Physics: Condensed Matter 16 (2004) 8531-8543. DOI: https://doi.org/10.1088/0953-8984/16/47/007
  • [28] A. Li, H. Song, J. Zhou, X. Chen, S. Liu, CuO Nanowire Growth on Cu2O by in situ Thermal Oxidation in Air, CrystEngComm 42/15 (2013) 8559- 8564. DOI: https://doi.org/10.1039/C3CE40985F
  • [29] B.J. Hansen, H. Chan, J. Lu, G. Lu, J. Chen, Short- Circuit Diffusion Growth of Long Bi-Crystal CuO Nanowires, Chemical Physics Letters 504/1-3 (2011) 41-45. DOI: https://doi.org/10.1016/j.cplett.2011.01.040
  • [30] L. Yuan, Y. Wang, R. Mema, G. Zhou, Driving Force and Growth Mechanism for Spontaneous Oxide Nanowire Formation During the Thermal Oxidation of Metals, Acta Materialia 59/6 (2011) 2491-2500. DOI: https://doi.org/10.1016/j.actamat.2010.12.052
  • [31] S. Rackauskas, A.G. Nasibulin, Nanowire Growth without Catalysts: Applications and Mechanisms at the Atomic Scale, ACS Applied Nano Materials 3/8 (2020) 7314-7324. DOI: https://doi.org/10.1021/acsanm.0c01179
  • [32] J. Shi, L. Qiao, Y. Zhao, Z. Sun, W. Feng, Z. Zhang, J. Wang, X. Men, Synergistic effects on thermal growth of CuO nanowires, Journal of Alloys and Compounds 815 (2020) 152355. DOI: https://doi.org/10.1016/j.jallcom.2019.152355
  • [33] P. Jagtap, E. Chason, A unified kinetic model for stress relaxation and recovery during and after growth interruptions in polycrystalline thin films, Acta Materialia 193 (2020) 202-209. DOI: https://doi.org/10.1016/j.actamat.2020.04.013
  • [34] M. Chen, Y. Yue, Y. Ju, Growth of Metal and Metal Oxide Nanowires Driven by the Stress-Induced Migration, Journal of Applied Physics 111/10 (2012) 104305. DOI: https://doi.org/10.1063/1.4718436
  • [35] A. Altaweel, T. Gries, S. Migot, P. Boulet, A. Mézin, T. Belmonte, Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress, Surface and Coatings Technology 305 (2016) 254-263. DOI: https://doi.org/10.1016/j.surfcoat.2016.08.001
  • [36] E. Chason, A.M. Engwall, Z. Rao, T. Nishimura, Kinetic model for thin film stress including the effect of grain growth, Journal of Applied Physics 123/18 (2018) 185305. DOI: https://doi.org/10.1063/1.5030740
  • [37] A. Altaweel, G. Filipič, T. Gries, T. Belmonte, Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow, Journal of Crystal Growth 407 (2014) 17-24. DOI: https://doi.org/10.1016/j.jcrysgro.2014.08.029
  • [38] L. Nkhaili, A. Narjis, A. Agdad, A. Tchenka, A. El Kissani, A. Outzourhit, A. Oueriagli, A Simple Method to Control the Growth of Copper Oxide Nanowires for Solar Cells and Catalytic Applications, Advances in Condensed Matter Physics 2020 (2020) 5470817. DOI: https://doi.org/10.1155/2020/5470817
  • [39] A. Breus, S. Abashin, O. Serdiuk, Carbon nanostructure growth: new application of magnetron discharge, Journal of Achievements in Materials and Manufacturing Engineering 109/1 (2021) 17-25. DOI: https://doi.org/10.5604/01.3001.0015.5856
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50b022cf-8db2-46bc-831d-d9e4e6ee04d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.