PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.
Rocznik
Strony
11--21
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • School of Automation Engineering Hangzhou Dianzi University Xiasha Higher Education Zone, Hangzhou, Zhejiang Province, China
  • School of Automation Engineering Hangzhou Dianzi University Xiasha Higher Education Zone, Hangzhou, Zhejiang Province, China
autor
  • School of Information Management and Artificial Intelligence Zhejiang University of Finance and Economics 18 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou City, Zhejiang Province, China
autor
  • School of Automation Engineering Hangzhou Dianzi University Xiasha Higher Education Zone, Hangzhou, Zhejiang Province, China
autor
  • School of Automation Engineering Hangzhou Dianzi University Xiasha Higher Education Zone, Hangzhou, Zhejiang Province, China
Bibliografia
  • [1] Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain 3D overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.
  • [2] Berselli, G., Balugani, F., Pellicciari, M. and Gadaleta, M. (2016). Energy-optimal motions for servo-systems: A comparison of spline interpolants and performance indexes using a CAD-based approach, Robotics and ComputerIntegrated Manufacturing 40: 55–65.
  • [3] Boor, C.D. and Fix, G.J. (1973). Spline approximation by quasi-interpolants, Journal of Approximation Theory 8(1): 19–45.
  • [4] Cheon, H. and Kim, B.K. (2019). Online bidirectional trajectory planning for mobile robots in state-time space, IEEE Transactions on Industrial Electronics 66(6): 4555–4565.
  • [5] Cui, L., Wang, H. and Chen, W. (2020). Trajectory planning of a spatial flexible manipulator for vibration suppression, Robotics and Autonomous Systems 123: 1–11, Paper no. 103316.
  • [6] Desai, A., Collins, M. and Michael, N. (2019). Efficient kinodynamic multi-robot replanning in known workspaces, 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 1021–1027.
  • [7] Fahroo, F. and Ross, I.M. (2000). Direct trajectory optimization by a Chebyshev pseudospectral method, Proceedings of the 2000 American Control Conference, Chicago, USA, Vol. 6, pp. 3860–3864.
  • [8] Fang, Y., Qi, J., Hu, J., Wang, W. and Peng, Y. (2020). An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints, Mechanism and Machine Theory 153: 1–22, Paper no. 103957.
  • [9] Gong, Q., Kang, W. and Ross, I.M. (2006). A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Transactions on Automatic Control 51(7): 1115–1129.
  • [10] Heidari, H. and Saska, M. (2020). Trajectory planning of quadrotor systems for various objective functions, Robotica 39(1): 137–152.
  • [11] Kim, J. (2020). Trajectory generation of a two-wheeled mobile robot in an uncertain environment, IEEE Transactions on Industrial Electronics 67(7): 5586–5594.
  • [12] Kroger, T. and Wahl, F.M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events, IEEE Transactions on Robotics 26(1): 94–111.
  • [13] Li, J., Ran, M. and Xie, L. (2021). Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization, IEEE Robotics and Automation Letters 6(2): 405–412.
  • [14] Liu, C., Zhang, C. and Xiong, F. (2020). Multistage cooperative trajectory planning for multimissile formation via bi-level sequential convex programming, IEEE Access 8: 22834–22853.
  • [15] Liu, P., Han, Y., Wang, W., Liu, X. and Liu, J. (2018). Maneuvering trajectory planning during the whole phase based on piecewise Radau pseudospectral method, Proceedings of the 37th Chinese Control Conference, Wuhan, China, pp. 4627–4632.
  • [16] Liu, Y., Zhang, Z., Wu, Z., Liu, F. and Li, X. (2021). Multiobjective preimpact trajectory-planning of space manipulator for self-assembling a heavy payload, International Journal of Advanced Robotic Systems 18(1): 1–22, Paper no. 1729881421990285.
  • [17] Mercy, T., Hostens, E. and Pipeleers, G. (2018). Online motion planning for autonomous vehicles in vast environments, 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, pp. 114–119.
  • [18] Muscio, G., Pierri, F., Trujillo, M.A., Cataldi, E., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., and Ollero, A. (2018). Coordinated control of aerial robotic manipulators: Theory and experiments, IEEE Transactions on Control Systems Technology 26(4): 1406–1413.
  • [19] Park, J. and Kim, H.J. (2021). Online trajectory planning for multiple quadrotors in dynamic environments using relative safe flight corridor, IEEE Robotics and Automation Letters 6(2): 659–666.
  • [20] Powell, M.J.D. (1981). Approximation Theory and Methods, Cambridge University Press, Cambridge.
  • [21] Qian, Y., Yuan, J. and Wan, W. (2020). Improved trajectory planning method for space robot-system with collision prediction, Journal of Intelligent and Robotic System 99(11): 289–302.
  • [22] Rousseau, G., Maniu, C.S., Tebbani, S., Babel, M. and Martin, N. (2019). Minimum-time B-spline trajectories with corridor constraints: Application to cinematographic quadrotor flight plans, Control Engineering Practice 89: 190–203.
  • [23] Schoenberg, I.J. (1969). Approximations with Special Emphasis on Spline Functions, Academic Press, Madison.
  • [24] Spedicato, S. and Notarstefano, G. (2018). Minimum-time trajectory generation for quadrotors in constrained environments, IEEE Transactions on Control Systems Technology 26(4): 1335–1344.
  • [25] Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020.
  • [26] Tatematsu, N. and Ohnishi, K. (2003). Tracking motion of mobile robot for moving target using NURBS curve, IEEE International Conference on Industrial Technology, Maribor, Slovenia, Vol. 1, pp. 245–249.
  • [27] Tho, H.D., Kaneshige, A. and Terashima, K. (2020). Minimum-time s-curve commands for vibration-free transportation of an overhead crane with actuator limits, Control Engineering Practice 98: 1–12, Paper no. 104390.
  • [28] Wang, M., Xiao, J., Zeng, F. and Wang, G. (2020). Research on optimized time-synchronous online trajectory generation method for a robot arm, Robotics and Autonomous Systems 126: 1–12, Paper no. 103453, DOI: 10.1016/j.robot.2020.103453.
  • [29] Wang, Y., Ueda, K. and Bortoff, S.A. (2013). A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system, Automatica 49(12): 3550–3561.
  • [30] Yu, L., Wang, K., Zhang, Q. and Zhang, J. (2020). Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm, Multibody System Dynamic 50(4): 25–43.
  • [31] Zhang, S., Zanchettin, A.M., Villa, R. and and Dai, S. (2020). Real-time trajectory planning based on joint-decoupled optimization in human-robot interaction, Mechanism and Machine Theory 144, Paper no. 103664, DOI: 10.1016/j.mechmachtheory.2019.103664.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50afe810-3b0c-4df0-9236-886ff7ce1959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.