PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing Photovoltaic Panel Performance through Hybrid Nanoparticle Cooling: A Study on Zinc Oxide and Aluminum Oxide Nanofluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High operating temperatures, particularly under conditions of high solar irradiation have adverse effects on the performance of the photovoltaic (PV) panels. The efficiency of electricity generation decreases with an increase in operating temperature, and therefore, minimizing the operating temperature is essential. Thus, efficient cooling systems are of significant importance, particularly in areas with scorching heat during the day. Hybrid nanoparticles have been identified as one of the most effective methods in utilizing the concept of PV cooling because of their special characteristics that can help improve the efficiency of solar panels in the long run. These nanoparticles offer the best heat dissipation and convective heat transfer alongside better light trapping and stability and are relatively cheaper to produce, thus playing a central role in enhancing the cooling effectiveness in photovoltaic systems. In our view, depending on these combined forces, hybrid nanoparticles can enhance the general effectiveness, dependability, and efficacy of solar panels as a high-potential instrument for solar power extraction. This study sought to determine the most effective ZnO and Al₂O₃ Nanofluids concentrations in improving the performance of PV modules. Five PV modules were placed side by side. One of them was a reference sample; the other four were coated on the backside with a range of hybrid nanofluid concentrations. K-type thermocouples were used to monitor the hourly backside thermal profile of each module to ensure thermal integrity. Moreover, a data logger monitored the current and the voltage of each PV during the experiment. In general, the coated modules had significantly better results compared to the control. The best improvement in the generated output power was obtained when 0. 4% Al₂O₃ and 0.2% ZnO reached 28.4% and increased efficiency to 29.6%.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
  • Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
  • Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
  • Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, PO Box 130, Amman 11733, Jordan
Bibliografia
  • 1. Farhan A.A., Hasan D.J. An experimental investigation to augment the efficiency of photovoltaic panels by using longitudinal fins. Heat Transfer 2020, 50(2): 1748–1757. doi:10.1002/htj.21951.
  • 2. Kim J., Nam Y. Study on the cooling effect of attached fins on PV using CFD Simulation. Energies 2019, 12(4): 758. doi:10.3390/en12040758.
  • 3. Bayrak F., Oztop H.F., Selimefendigil F. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy 2019, 188: 484–494. doi:10.1016/j.solener.2019.06.036.
  • 4. Dwivedi P., Sudhakar K., Soni A., Solomin E., Kirpichnikova I. Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering 2020, 21: 100674. doi:10.1016/j.csite.2020.100674.
  • 5. Teo H.G., Lee P.S., Hawlader M.N.A. An active cooling system for photovoltaic modules. Applied Energy 2012, 90(1): 309–315. doi:10.1016/j.apenergy.2011.01.017.
  • 6. Bevilacqua P., Perrella S., Cirone D., Bruno R., Arcuri N. Efficiency improvement of photovoltaic modules via back Surface Cooling. Energies 2021, 14(4): 895. doi:10.3390/en14040895.
  • 7. Bahaidarah H., Subhan A., Gandhidasan P., Rehman S. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013, 59: 445–453. doi:10.1016/j.energy.2013.07.050.
  • 8. Tan L., Date A., Fernandes G., Singh B., Ganguly S. Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia 2017, 110: 83–88. doi:10.1016/j.egypro.2017.03.110.
  • 9. Hamdan M., Kardasi K. Improvement of photovoltaic panel efficiency using nanofluid. International Journal of Thermal and Environmental Engineering 2017, 14(2): 143–151.
  • 10. Abdelhafez E., Hamdan M., AL-Maghalseh M. Enhancing photovoltaic panel efficiency using a combination of zinc oxide and titanium oxide water-based nanofluids. Case Studies in Thermal Engineering 2023, 49: 103382. doi:10.1016/j.csite.2023.103382.
  • 11. Abdelhafez E., Fava S. Performance of a PV module using water-based titanium oxide nanofluid coated fins. International Journal on Energy Conversion (IRECON) 2022, 10(2): 52. doi:10.15866/irecon.v10i2.21816.
  • 12. Gharzi M., Arabhosseini A., Gholami Z., Rahmati M.H. Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: A review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance. Solar Energy 2020, 211: 117–146. doi:10.1016/j.solener.2020.09.048.
  • 13. Kumar R., Deshmukh V., Bharj R.S. Performance enhancement of photovoltaic modules by Nanofluid Cooling: A Comprehensive Review. International Journal of Energy Research 2020, 44(8): 6149–6169. doi:10.1002/er.5285.
  • 14. Xu Z., Kleinstreuer C. Computational analysis of nanofluid cooling of high concentration photovoltaic cells. Journal of Thermal Science and Engineering Applications 2014, 6(3). doi:10.1115/1.4026355.
  • 15. Sutanto B., Indartono Y.S. Numerical approach of Al2O3-water nanofluid in photovoltaic cooling system using mixture multiphase model. IOP Conference Series: Earth and Environmental Science 2018,168: 012003. doi:10.1088/1755-1315/168/1/012003.
  • 16. Takiso T.A., Manbecho B.T. Recent improvements of the PV Solar Energy Generation Performance. International Journal of Recent Technology and Engineering (IJRTE) 2021, 10(3): 117–129. doi:10.35940/ijrte.c6448.0910321.
  • 17. Manasrah A., Masoud M., Jaradat Y., Bevilacqua P. Investigation of a real-time dynamic model for a PV cooling system. Energies 2022, 15(5): 1836. doi:10.3390/en15051836.
  • 18. Nasrin R., Hasanuzzaman Md., Rahim N.A. Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance. International Journal of Numerical Methods for Heat & Fluid Flow 2019, 29(6): 1920–1946. doi:10.1108/hff-04-2018-0174.
  • 19. Karaaslan I., Menlik T. Numerical Study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Solar Energy 2021, 224: 1260–1270. doi:10.1016/j.solener.2021.06.072.
  • 20. Al-Oran O., Abu Shaban, N., Manna, R., Ayadi, O., A’saf, A., Lezsovits, F. Performance study of parabolic trough solar collector using hybrid nanofluids under Jordanian weather conditions. Journal of Thermal Analysis and Calorimetry 2024, 149(9): 3981–3998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50afd809-6566-4db1-8c1b-46924f0d66d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.