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Abstract. This study presents the use, and its advantages, of artificial intelligence methods to predict
the discharge coefficient (Cw), considering the approach conditions of the labyrinth weir type D. The
study suggests modifying the training and validation rates in AI tools, which are often fixed without
proper justification in previous studies. Unlike most studies that use geometric dimensions as inputs, this
work focuses on the approach conditions (the emplacement of the labyrinth weir and filling the alveoli
upstream and downstream) of the labyrinth weir type D. The results, based on laboratory experiments,
show that these modified inputs significantly impact the efficiency and cost of constructing the weir.
Moreover, the Cw predictions based on these inputs are highly satisfactory compared to laboratory test
results. In terms of training and validation ratios, the study confirms that the optimal ratio is 70/30 for
accurate and highly satisfactory predictions.
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1. Introduction

Throughout the 20th century, the global construction of numerous dams reached a re-
markable peak, resulting in approximately 60,000 large dams being in operation.
Currently, over 50% of these dams have surpassed 50 years of service, prompting
a reevaluation of dam safety criteria (Biener 1985). Recent studies indicate an in-
tensification of maximum flood flows compared to initial predictions, necessitating
the rehabilitation of existing dam weirs (Belaabed 2019). Research has shown that
non-linear weirs, such as piano key weirs (PK-Weir), classical mazes, and fuse gates,
offer effective solutions (Belaabed et al 2021, Ben Said and Ouamane 2022).

Labyrinth weirs, with their non-linear configurations featuring trapezoidal, trian-
gular, or rectangular geometric repetitions, offer cost-effective advantages (Crookston
and Tullis 2010). The capacity of a non-linear weir depends primarily on its height,
© 2024 Institute of Hydro-Engineering of the Polish Academy of Sciences. This is an open access article licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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crest shape, and length (Falvey and Treille 1995). However, the mathematical resolu-
tion of this problem is complex due to the dependence on various geometric parame-
ters and approach conditions (Lux III 1987). Model experiments have been conducted
to assess the impact of approach conditions on labyrinth weir performance.

Previous studies have explored different orientations and placements of labyrinth
weirs relative to flood discharge channels (Houston 1983), revealing that normal
orientation yields higher flow rates compared to reverse orientation. Additionally,
partially submerging the weir in the reservoir further increases discharge (Houston
1983). However, these results are limited, emphasizing the need for additional re-
search to provide more precise design recommendations. Another study evaluated
the effect of different upstream entry shapes on labyrinth weir flow (Ouamane and
Lempérière 2006). Models without guide walls exhibited higher flow coefficients than
those with curved guide walls, even for high relative loads. The study also demon-
strated that labyrinth weirs with curved guide walls displayed better hydraulic perfor-
mance than those with straight guide walls, even under high relative loads (Ouamane
and Lempérière 2006).

Recent research has explored the use of artificial intelligence (AI) to calculate
labyrinth weir discharge coefficients (Filo 2023). Despite significant growth in re-
search on application of AI algorithms in hydraulic science, it is surprising how
few studies are dedicated to investigating the weir performance assessment under a
combination of factors during the model development phase (Idrees and Al-Ameri
2022). These factors could include the choice of data splitting or the selection of
sampling techniques. Regarding data splitting, the data sample is often divided into
two datasets: a training set for model training and a testing set for model validation.
Many researchers have proposed a ratio of 70/30 or 80/20 (training/testing set) for
creating datasets in discharge coefficient calculations (Hekmat et al 2023, Majedi-Asl
et al 2022, Salmasi et al 2021). Additionally, in the selection of sampling techniques,
the geometry of labyrinth weirs in these studies was used as input for ML models.
Recently, Majedi-Asl Get al (2024) conducted a study on estimating the discharge co-
efficient of labyrinth weirs by varying the model’s input parameters, including the total
water head ratio, magnification (Lc/W ), and cycle wall angle (α). The study revealed
that each of these parameters demonstrated satisfactory performance in predicting the
discharge coefficient. Moreover, Seyedian et al (2023) found that the most effective
parameters in predicting Cw are the ratio (L/h) and the Froude number. However, ad-
ditional studies are required to evaluate the impact of various input parameters of the
labyrinth weir on machine learning (ML) models.

The main objective of the present study is to evaluate the performance of an ANN
model considering different ratios of labyrinth weir data splitting for the prediction
of the discharge coefficient. In this research, two labyrinth weirs approach conditions
were adopted to estimate the discharge coefficient of labyrinth weir type D, based
on different splitting ratios of input data for the training and testing phases. The first
approach condition involved the emplacement of the labyrinth weir, and the second
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involved filling the alveoli upstream and downstream. The main difference between
this study and previously published works is that this is the first time when the influ-
ence of labyrinth weir approach conditions and the splitting strategy of training and
testing datasets used in the ANN model has been investigated to predict the value of
Cw.

2. Experimental Study

2.1. Description of the Test Facility

An experimental study was conducted at the Hydraulic Planning and Environment
Laboratory (LAHE) of the University of Biskra in Algeria to investigate the effects
of upstream and downstream approach conditions on the performance of a Type D
labyrinth weir. Tests were carried out in a testing facility comprising a supply channel
with a 0.95 m × 0.95 m cross-section and a 4.30 m length. This channel is connected
to the simulation basin, with a rectangular shape 4.0 m × 5.0 m and a 1.1 m height.
The labyrinth model is inserted at the outlet of the simulation basin. The so-called
return channel is 2.0 m long and 1.0 m wide, connected to outlet (Fig. 1). The setup
included a pumping unit with two pumps capable of discharging 0.180 m3/s and two
conduits equipped with valves to test a wide range of flow rates (from 0.030 m3/s to
0.180 m3/s).

The study focused on a type D labyrinth weir model (Fig. 2) constructed by using
metal sheets with a thickness (Ts) of 0.002 m. The geometric characteristics of the
model are outlined in Table 1.

Table 1. Geometrical characteristics of the experimented model
n L Wt P B Wu a b r L/Wt W /P a/bModel
– m m m m m m m m – –

R L with
rounded entrance 6 3.55 0.908 0.15 0.25 0.598 0.9 0.6 0.3 3.91 3.97 1.5

– type D
a : Inlet width (alveoli the upstream); Wt: Total width of the labyrinth weir
b: Outlet width (alveoli the downstream); Wu: Width of a labyrinth weir unit
B: Length of lateral wall; Ts: Sidewall thickness
P: Height of labyrinth weir; L: Length of crest development labyrinth weir
r: Raduit of round shape; n: Developed length ratio of the labyrinth weir (n=L/Wt)

2.2. Labyrinth Weir Emplacement

Labyrinth weirs are versatile flow control and discharge structures used in rivers,
streams, canal entrances for earth dam spillways, and even on concrete dam crests.
This diversity necessitates different placement strategies. In the first three cases, the
weir is installed directly on the channel bed. However, for dam spillways, the weir is
positioned on the dam’s crest, which acts as a concrete foundation.
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Fig. 1. Experimental station: (a) 3D view; (b) planar view

To investigate the effects of these placements, two labyrinth weir configurations
were studied. The first, designated (Model A′, Fig. 3b) involves placing the weir on
the raft of the experimental channel. The second, designated (Model A, Fig. 3a) in-
volves mounting the weir on a concrete base to simulate chute flow conditions. Both
placement types were implemented in the experimental model of the labyrinth weir.

2.3. Filling Alveoli of the Upstream and Downstream

Labyrinth weirs typically have wall heights ranging from 3.0 to 15.0 meters, with
varying thickness. Taller walls require reinforced concrete to withstand water pres-



Prediction of the Discharge Coefficient of a Labyrinth Weir Type D. . . 63

Fig. 2. Rectangular Labyrinth with rounded entrance-type D – a 3D view

Fig. 3. Labyrinth weir placement: (a) placement on base “Model A”;
(b) placement on the raft channel “Model A′”

sure, significantly increasing costs. To reduce costs, we can lower the height of the
free-standing parts of the walls while keeping the overall height of the weir. This is
achieved by filling the inlet, outlet, or both with concrete, forming an inclined foun-
dation or stepped arrangement. This reduces the need for reinforcing steel to only the
shorter sections of the walls. We studied three cases to explore this approach:

– Effect of filling alveoli downstream: Two scenarios were tested for the labyrinth
weir with a rounded upstream: Model B1 and Model B3 (Fig. 4a and c);

– Effect of filling alveoli upstream: The flow in the upstream cells can be stable or
disturbed based on the bed design. Two designs were considered: Model B1 and
Model B2 (Fig. 4a and b);

– Effect of filling alveoli upstream bed inclination: To study the influence of bed
inclination, two scenarios were considered: Model B3 and Model B4 (Fig. 4c and
d).
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Fig. 4. Labyrinth weir: (a) With a raft horizontally positioned upstream of the
cells “Model B1”; (b) Inclined bed covering the entire height of the upstream
cell “Model B2”; (c) Inclined bed covering the entire height of the upstream
cell and with two steps, each 5 cm high “Model B3”; (d) Inclined bed covering
2/3 of the height of the upstream cell and with two steps, each 5 cm high

“Model B4”

3. Neural Network Architecture

ML models are recognized as sophisticated methodologies for rapid and accurate fore-
casting of real-world issues. These models, relying on objective computational tech-
niques, can handle complex interactions between input and output variables. ML mod-
els show notable sensitivity both to data quality and the methodology used through-
out the modeling process, especially to the ratio employed to partition datasets for
ML model training and testing. In this study, we examined the impact of the train-
ing/validation ratio on the performance of the widely used ML model in predicting
the discharge coefficient Cw.

Artificial Neural Networks (ANNs) are widely recognized as a powerful ML tech-
nique, modeled after the structure and function of biological neural networks, specifi-
cally the human brain’s nervous system. This method has been successfully applied to
a variety of hydraulic engineering problems (Belaabed et al 2021). ANNs are used to
identify relationships between input and output neurons in both linear and nonlinear
patterns, enabling them to make decisions by analyzing patterns and relationships
within the data. In this study, a multilayer perceptron neural network, a well-known
type of ANN, was utilized as a regression technique to estimate the discharge coeffi-
cient.

We conducted numerous simulations to determine the best configuration of our
ANN, testing different activation functions, numbers of hidden layers, and numbers of
neurons in the hidden layer. The Levenberg-Marquardt back-propagation algorithm,



Prediction of the Discharge Coefficient of a Labyrinth Weir Type D. . . 65

recognized as the most commonly used algorithm for supervised learning, allowed us
to adjust the weights and biases of the neural network, thereby enhancing its predictive
ability.

Fig. 5. Architecture of the ANN model: (a) Model 1, (b) Model 2

In Figure 5, we present two distinct models for selecting inputs. Model 1 uses
factors like the total relative upstream height ratio (H*/P) and weir placement, as
shown in Models A and A′ of Figure 3. In contrast, Model 2 incorporates the total
relative upstream height ratio (H*/P) and the filling of alveoli in the upstream and
downstream cells, as illustrated in Models B1, B2, B3, and B4 of Figure 4. Both models
predict the discharge coefficient Cw as indicated in Figure 5.

For the static evaluation of ML models, we divided the dataset into two parts using
varying training/validation ratios (10/90, 20/80, 30/70, up to 90/10). The training set
was employed to build the model, and the validation set was utilized to assess the
predictive capability of the model. Ultimately, we gauged the model’s performance
using several criteria outlined in Equations 1 through 3.

R2 = 1 −


n∑
1

(
ypr − y(target)

)2

n∑
1

(
ytarget − mean(y(target))

)2

 , (1)

MAE =
1
2
−

n∑
i−1

∣∣∣ypr − y(target)
∣∣∣ , (2)

RMSE =

√√
1
2
−

n∑
1

(
ypr − y(target)

)
, (3)

where:
– R2: the coefficient of determination,
– MAE: the Mean absolute error,
– RMSE: the Root Mean Squared Error,
– ypr and y(target) are predicted and target values of the discharge coefficient Cw of

labyrinth weir, respectively.
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4. Results and Discussions

4.1. The Influence of the Weir Emplacement

The experimental results are represented by the relationship between the discharge co-
efficient and the upstream relative head (H*/P) (Fig. 6a). The impact of the labyrinth
weir’s emplacement was studied by comparing two installation types: Model A and
A′ (Fig. 3). The results indicate that placing the weir on a pedestal results in a perfor-
mance loss of 9.0% for upstream relative heads (H*/P) below 0.40 and 3.0% for H*/P
values above 0.40.

4.2. Filling Alveoli of the Upstream and Downstream

The graphical representation (Fig. 6b) of the performance of the rounded upstream
labyrinth weir, as a function of the downstream alveolus clutter (with 2 steps and
without steps), shows that Model B3 does not affect performance. Furthermore, it
was observed that for low and medium relative heads, there is a slight performance
improvement of about 4.0%. These results also indicate that the stepped design of the
downstream alveoli raft does not affect performance as long as the step height does
not exceed 2/3 of the weir height.

Additionally, the discharge coefficients indicate that designing a more optimal
hydraulic shape (Model B1) would increase the efficiency of the labyrinth weir by
approximately 8.0% for relative heads H*/P < 0.7, compared to Model B2.

Finally, the difference between the values of the model B3 and B4 decreases as the
relative head H*/P increases. For a relative head of H*/P = 0.3, the difference is 11%;
for H*/P = 0.5, the difference decreases to 5%; and for H*/P = 0.7, the difference
between the two models is 3%. This supports the previous result obtained with the
model B1. However, the difference between the last two cases (model B3 and B4) is
not significant enough to determine the better choice definitively, so the final decision
will depend on economic considerations.

4.3. Influence of Training/Validation Ratio

Table 2 displays various simulations conducted using the ANN method for both types
of labyrinth models. We observed that the optimal number of neurons varies depend-
ing on the type of transfer function, the number of hidden layers, and the approach
conditions employed.

Figure 7 illustrates the fluctuation of performance criteria based on the percent-
age ratio between the training set and validation set for both Model 1 and Model 2. To
assess the impact of changing this ratio on the performance of the ANN model, this
analysis was conducted on the training and validation datasets. A close examination
of the figure reveals a notable trend: as the training ratio increases, the RMSE and
MAE performance criteria show significant instability, reaching high values until the
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Fig. 6. Cw results obtained by our ANN model and our experimental tests:
(a) Model 1, (b) Model 2

ratio reaches the 70/30 configuration (Figures 7a and 7b). An intriguing observation
emerges at this crucial 70/30 ratio point: both RMSE and MAE values reach a mini-
mum, suggesting a significant improvement in the accuracy of the ANN model. This
indicates that the model effectively generalizes across the training and validation sets,
achieving optimal performance at this specific point.
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Table 2. Various simulations executed using the ANN model
Nr of Activation Type of
H.L. function Model ANN

Training−Testing (%) Nr of the best neurons

(10/90); (20/80); (30/70); (19); (15); (12); (13);
Model 1 (40/60); (50/50); (60/40); (24); (26); (29);

T-T (1 to 30 (70/30); (80/20) and (90/10) (28) and (26)1
neurons) (10/90); (20/80); (30/70); (2); (2); (2); (2);

Model 2 (40/60); (50/50); (60/40); (2); (2); (2);
(70/30); (80/20) and (90/10) (2) and (2)
(10/90); (20/80); (30/70); (13); (7); (16); (16);

Model 1 (40/60); (50/50); (40/60); (16); (19); (28);
L-L (1 to 30 (30/70); (20/80) and (90/10) (19) and (19)1

neurons) (10/90); (20/80); (30/70); (6-22); (4-16); (13-14);
Model 2 (40/60); (50/50); (60/40); (12-2); (14-28); (8-12);

(70/30); (80/20) and (90/10) (5-28); (10-29) and (8-5)
(10/90); (20/80); (30/70); (9); (22); (9); (30);

Model 1 (40/60); (50/50); (60/40); (25); (21); (27);
P-P (1 to 30 (70/30); (80/10) and (90/10) (30) and (10)1

neurons) (10/90); (20/80); (30/70); (16); (27); (11); (17);
Model 2 (40/60); (50/50); (60/40); (2); (2); (17);

(70/30); (80/20) and (90/10) (30) and (10)
(10/90); (20/80); (30/70); (19); (1); (15); (30);

Model 1 (40/60); (50/50); (60/40); (21); (28); (30);T-T-P (1 to 30
(70/30); (80/20) and (90/10) (23) and (21)2 neurons
(10/90); (20/80); (30/70); (6-4); (8-17); (14-20);in each) H. L.

Model 2 (40/60); (50/50); (60/40); (13-20); (7-11); (5-15);
(70/30); (80/20) and (90/10) (6-15); (8-18) and (13-29)

H. L.: Hidden Layer L: Sigmoid
T: Tangent Hyperbolic P: Linear

Furthermore, the examination of the R2 criterion reveals a specific dynamics.
It can be generally seen that the ANN model with a 70/30 split (training/testing)
achieved the highest R2 values compared to other training/testing percentage models.
However, the ANN model with the lowest training percentage and highest testing per-
centage exhibited the most unstable values R2 (i.e., the lowest R2 values). As depicted
in sub-figure 7c, the results compellingly demonstrate that the ANN model performs
better on both training and validation sets when set at 70/30. A thorough analysis of
average, standard, and quantitative performance levels supports this assertion, under-
scoring the crucial importance of this ratio in achieving optimal model accuracy.

4.4. Prediction of Cw by Optimal Ratio

Adhering to the previously identified optimal proportion, Table 3 presents a detailed
study using our ANN model (70/30). For each input type, we crafted four models by
adjusting the activation function and the number of hidden layers. Subsequently, we
identified the optimal number of neurons for each input type. Finally, based on the
RMSE, MAE, and R2 values, we selected the most effective solution.
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Fig. 7. Testing of the ANN model performance under different percentage
values of the training/testing split ratio for the all datasets:

(a) RMSE; (b) MAE; (c) R2

The results in the table indicate that the “Sigmoid” activation function exhibits
extremely poor performance, while the “Linear” activation function shows average
performance. However, the “Tangent Hyperbolic” activation function demonstrates
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Table 3. Different simulations executed for the 70/30 rati
Nr Nr of Training Validation Global predictionANN
of best

Activation
RMSE MAE RMSE MAE RMSE MAEModel

H.L. neurons
function

(10−2) (10−2) (10−2) (10−2) (10−3) (10−3)
R2

M1−a 1 29 T-T 7.652 4.423 1.369 1.843 2.236 8.734 0.997
M1−b 1 2 L-L 144.4 29.58 117.7 35.76 29.70 31.48 0.314
M1−c 1 28 P-P 0.29e-4 7.715 4.946 12.84 0.439 9.292 0.862
M1−d 2 5–28 T-T-P 0.027 6.33e-3 1.035 1.234 0.883 3.843 0.999
M1−a 1 27 T-T 0.567 0.620 0.715 7.21 0.899 8.15 0.997
M1−b 1 17 L-L 214 27.53 150 29.91 28.06 28.24 0.637
M1−c 1 30 P-P 7.3e-13 7.807 11.91 8.37 6.982 79.75 0.856
M1−d 2 6–15 T-T-P 0.255 4.561 2.643 6.059 0.131 5.009 0.999
M1: Model 1 and M2: Model 2

highly satisfactory performance, becoming exceptional in both models when increas-
ing the number of hidden layers to two.

Overall, the results for both input models revealed significant variations in model
performance based on the transfer function and the number of hidden layers. The
findings demonstrated that the “Tangent Hyperbolic” transfer function and two hidden
layers together were optimal for training and validating ANN models with labyrinth
approach conditions and h*/P as inputs. This discovery contradicts other published
works, such as the study by (Ayaz and Mansoor 2021), which investigated Cw predic-
tions using the ANN for a triangular labyrinth model with different geometric aspects
as inputs. They showed that the “Sigmoid” transfer function yields better performance.
Additionally, Ahmad et al (2023) observed that errors (RMSE and MAE) decrease
when using the ”Linear” transfer function in their ANN learning model for an arc
labyrinth weir and its geometric conditions as inputs.

We have presented Figures 7a and b to better understand the discrepancies between
the results obtained by our developed model and the results from experimental trials.
According to these figures, we observed a very good agreement between the results
of the developed model and the experimental outcomes in both studied types.

5. Conclusions

Our investigation into the labyrinth weir discharge coefficient computation method
highlights the difficulty involved and the rising interest in using ANNs to facilitate
this computation. The ANN techniques need a thorough understanding of the com-
ponents that influence the outcome, which makes creating accurate and significant
equations for forecasting labyrinth weir discharge coefficients a challenging issue. In
contrast to conventional methods, our work avoids predetermined ratios for training
and validation and concentrates on the weir approach circumstances as inputs. The
variance in these ratios provides insight into how they affect the efficacy and precision
of ANN models, providing a unique viewpoint to improve the state-of-the-art ANN
applications in this domain.
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The Hydraulic Planning and Environment Laboratory (LAHE) in Algeria con-
ducted an experimental study that sheds light on how to approach circumstances that
affect the functionality of a Type D labyrinth weir. The results show the relevance of
weir emplacement and filling upstream and downstream compartment designs. The
results suggest that filling the upstream cells as an inclined weir and the downstream
cells as stair steps does not impact the weir performance, as long as the height of
these inclined weirs and steps remains below 2/3 of the cell height. The research
underscores the need to consider these aspects throughout the design and operation
process by highlighting the performance losses that occur when the weir is positioned
on a pedestal.

An interesting pattern emerges when the performance criteria for the ANN model
about the training-validation data ratio are examined. The crucial point is the 70–30
ratio, which significantly increases the model accuracy. The research highlights how
well the model generalizes the training and validation sets and the importance of the
70–30 ratio to attaining optimum performance.

Moreover,t he assessment of activation functions in ANN models reveals the sig-
nificance of choosing an appropriate transfer function and the number of hidden lay-
ers. Consistently outperforming other functions, “Tangent Hyperbolic” with two hid-
den layers offers important insights for model building. This result highlights the need
to consider context-specific factors when selecting activation functions, even if they
contradict certain previous studies.

Our research adds a nuanced knowledge of the labyrinth weir discharge coefficient
prediction, highlighting the relevance of certain model configurations, the influence
of approach circumstances, and the possibility of ANNs. The results of this study
have significance for the development of ANNs in hydraulic engineering to enhance
the prediction accuracy and guidelines for designing decision making.
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