PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An adaptive differential evolution algorithm witha bound adjustment strategy for solving nonlinear parameter identification problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adaptacyjny różniczkowy algorytmewolucyjny ze strategią dostosowywania granic do rozwiązywania nieliniowych problemów identyfikacji parametrów
Języki publikacji
EN
Abstrakty
EN
Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.
PL
Problemy identyfikacji parametrów w świecie rzeczywistym wymagają określenia granic, które pokrywają nieznane rozwiązania. W artykule przedstawiono adaptacyjny różniczkowy algorytm ewolucyjny ze strategią dostosowywania granic (ADEBAS) do rozwiązywania nieliniowych problemów identyfikacji parametrów. Strategia dostosowywania wykrywa naruszenia granic parametrów zmutowanych wektorów podczas procesu ewolucji i stopniowo rozszerza granice. Algorytm adaptacyjnie wykorzystuje dwie strategie mutacji i dwa zakresy szybkości krzyżowania, aby zrównoważyć różnorodność populacji i szybkość zbieżności. Wyniki eksperymentów pokazują, że ADEBAS może rozwiązać 24 zadania regresji nieliniowej z benchmarku National Institute of Standards and Technology z dokładnym oszacowaniem i niezawodnością. Przewyższa również porównywane metody w rzeczywistych problemach identyfikacji parametrów.
Rocznik
Strony
119--126
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
  • Khon Kaen University, Faculty of Science, Department of Mathematics, Khon Kaen, Thailand
  • Khon Kaen University, Faculty of Science, Department of Mathematics, Khon Kaen, Thailand
  • Khon Kaen University, Faculty of Science, Department of Mathematics, Khon Kaen, Thailand
Bibliografia
  • [1] Alam D. F. et al.: Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management 101, 2015, 410–422 [http://dx.doi.org/10.1016/j.enconman.2015.05.074].
  • [2] Askary R., Najarchi M., Mazaheri H.: Estimating SWRC parameters and unsaturated hydraulic permeability by improved Jaya and hybrid improved jaya optimization algorithms. Earth Science Informatics 15(4), 2022, 2155–2169 [https://doi.org/10.1007/s12145-022-00862-z].
  • [3] Barati R.: Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. Journal of Hydrologic Engineering 16(11), 2011, 946–954 [http://doi.org/10.1061/(ASCE)HE.1943-5584.0000379].
  • [4] Brooks S. P., Morgan B. J.: Optimization using simulated annealing. Journal of the Royal Statistical Society Series D: The Statistician 44(2), 1995, 241–257.
  • [5] Chen X. et al.: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Applied energy 212, 2018, 1578–1588 [https://doi.org/10.1016/j.apenergy.2017.12.115].
  • [6] Gautier M., Janot A., Vandanjon P. O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Transactions on Control Systems Technology 21(2), 2012, 428–444 [https://doi.org/10.1109/TCST.2012.2185697].
  • [7] Hu Z., Gong W., Li S.: Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models. Energy Reports 7, 2021, 916–928 [https://doi.org/10.1016/j.egyr.2021.01.096].
  • [8] Jin J., Gans N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics and Computer-Integrated Manufacturing 31, 2015, 21–29 [https://doi.org/10.1016/j.rcim.2014.06.004].
  • [9] Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95- international conference on neural networks, 1995, 1942–1948.
  • [10] Li S., Gong W., Yan X., Hu C., Bai D., Wang L.: Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy 190, 2019, 465–474 [https://doi.org/10.1016/j.solener.2019.08.022].
  • [11] Liang J. et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Solar Energy 207, 2020, 336–346 [https://doi.org/10.1016/j.solener.2020.06.100].
  • [12] Mohan S.: Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering 123(2), 1997, 137–142 [https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)].
  • [13] Nemes A. D. et al.: Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of hydrology 251(3-4), 2001, 151–162.
  • [14] Price W. L.: A controlled random search procedure for global optimisation. The Computer Journal 20(4), 1977, 367–370.
  • [15] Puphasuk P., Wetweerapong J.: An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization. Foundations of Computing and Decision Sciences 45(2), 2020, 97–124 [https://doi.org/10.2478/fcds-2020-0007].
  • [16] Salhi H., Kamoun S.: A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Applied Mathematical Modelling 39(16), 2015, 4951–4962 [https://doi.org/10.1016/j.apm.2015.03.050].
  • [17] Singsathid P., Wetweerapong J., Puphasuk P.: Parameter estimation of solar PV models using self-adaptive differential evolution with dynamic mutation and pheromone strategy. Computer Science 19(1), 2024, 13–21.
  • [18] Storn R., Price K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328].
  • [19] Tvrdík J., Křivý I., Mišík L.: Adaptive population-based search: application to estimation of nonlinear regression parameters. Computational statistics & data analysis 52(2), 2007, 713–724 [https://doi.org/10.1016/j.csda.2006.10.014].
  • [20] Wang D. et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Reports 8, 2022, 4724–4746 [https://doi.org/10.1016/j.egyr.2022.03.144].
  • [21] Wang L., Huang C., Huang L.: Parameter estimation of the soil water retention curve model with Jaya algorithm. Computers and Electronics in Agriculture 151, 2018, 349–353 [https://doi.org/10.1016/j.compag.2018.06.024].
  • [22] Whitley D.: A genetic algorithm tutorial. Statistics and computing 4, 1994, 65–85.
  • [23] Xu L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing 120, 2016, 660–667 [https://doi.org/10.1016/j.sigpro.2015.10.009].
  • [24] Yang X., You X.: Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences 7(5), 2013, 1977–1983.
  • [25] Yu K. et al.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy 237, 2019, 241–257 [https://doi.org/10.1016/j.apenergy.2019.01.008].
  • [26] Zhang J., Wang Z., Luo X.: Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6), 2018, 815 [https://doi.org/10.3390/w10060815].
  • [27] Zhou J. et al.: Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning. Applied Energy 314, 2022, [https://doi.org/10.1016/j.apenergy.2022.118877].
  • [28] National Institute of Standards and Technology. Nonlinear regression, 2003 [https://www.itl.nist.gov/div898/strd/nls/nls_info.shtml].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50adb9b7-4e5e-44c3-9e79-de84c450d344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.