PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Graphene oxide flake activation via divinylsulfone – a procedure for efficient β-galactosidase immobilization

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flaky graphene oxide was activated with divinylsulfone followed by immobilization of the β-galactosidase enzyme. An active and stable preparation was obtained. β-galactosidase stability after immobilization was much higher than with the native enzyme. The half-life time of the immobilized enzyme was estimated as 165 hours, while for the native form, the estimate was only 5 hours. The developed procedure for the preparation of flaked graphene and its use in the chemical immobilization of enzymes can be used for any enzyme. A processing solution for continuous operation was proposed and verified using cow’s milk, with lactose as the hydrolysed substrate, as a dosing stream. Lactose, a milk sugar, was effectively hydrolysed. Product for allergy sufferers who cannot digest lactose has been obtained in this way.
Rocznik
Strony
27--32
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Department of Bioprocess and Biomedical Engineering, Norwida 4/6, 50-373 Wroclaw, Poland
Bibliografia
  • 1. Zhen, Z. & Zhu H. (2017). Structure and Properties of Graphene , Academic Press.
  • 2. Wang, Y., Li, Z., Wang, J., Li, J. & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol . 29(5), 205–212. DOI: 10.1016/j.tibtech.2011.01.008.
  • 3. Talat, M. & Srivastava, O.N. (2016). Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications, Advances in Nanomaterials 383–395, DOI: 10.1007/978-81-322-2668-0_11
  • 4. Lin, L.L., Chi, M.C., Lan, Y.J., Lin, M.G., Juang, T.Y. & Wang, T.F. (2017). Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides. Internat. J. Biol. Macromolec . 117, 1326–1333. DOI: 10.1016/j.ijbiomac.2017.11.153.
  • 5. Zhang, Y., Zhang, J., Huang, X., Zhou, X., Wu, H. & Guo, S. (2012). Assembly of Graphene Oxide–Enzyme Conjugates through Hydrophobic Interaction. Small 8(1), 154–159. DOI: 10.1002/smll.201101695.
  • 6. Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J. & Guo, S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 26(9), 6083–6085. DOI: 10.1021/la904014z.
  • 7. Bolibok, P., Wisniewski, M., Roszek, K. & Terzyk, A.P. (2017). Controlling enzymatic activity by immobilization on graphene oxide, Sci. Nat . 104: 36. DOI: 10.1007/s00114-017-1459-3.
  • 8. Kishore, D., Talat, M., Srivastava, O. & Kayastha, A. (2012). Immobilization of β-Galactosidase onto Functionalized Graphene Nano-sheets Using Response Surface Methodology and Its Analytical Applications, Plos One 7(7):e40708. DOI: 10.1371/journal.pone.0040708.
  • 9. Rodrigues, R.R., Berenguer-Murcia, A. & Fernandez-Lafuente, R. (2011). Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes, Adv. Synth. Catal . 353(13), 2216–2238. DOI: 10.1002/adsc.201100163.
  • 10. dos Santos, J.C.S., Rueda, N., Barbosa, O., Fernandez-Sanchez, J.F., Medina-Castillo, A.L., Ramon-Marquez, T., Arias-Martos, M.C., Millan-Linares, M.C., Pedroche, J., del Mar Yust, M., Goncalves, L.R.B. & Fernandez-Lafuente, R. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Adv. 5, 20639–20649. DOI: 10.1039/C4RA16926C.
  • 11. Zucca, P. & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 19, 14139–14194. DOI: 10.3390/molecules190914139.
  • 12. Trusek-Holownia, A. (2005). A catalytic membrane for hydrolysis reaction carried out in the two-liquid phase system - Membrane preparation and characterisation, mathematical model of the proces. J. Membr. Sci. 259(1–2), 74–84. DOI: 10.1016/j.memsci.2005.03.047
  • 13. Miller, C.N. (1959). Use of dinitrosalicyle acid reagent for determination of reducing sugar. Anal. Chem. 81, 426–428.
  • 14. Braga, A.R.C., Silva, M.F., Oliveira, J.V., Treichel, H. & Kali l, S.J. (2014). A new approach to evaluate immobilization of β-galactosidase on Eupergit ® C: structural, kinetic, and thermal characterization. Quím. Nova 37, 5, 796–803. DOI: 10.5935/0100-4042.20140128.
  • 16. Niu, D., Tian, X., Mchunu, N.P., Jia, Ch., Singh, S., Liu, X., Prior, B.A. & Lu, F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Elect. J. Biotechnol . 27, 37–43. DOI: 10.1016/j.ejbt.2017.03.001.
  • 17. Czyzewska, K. & Trusek, A. (2018), Encapsulated catalase from Serratia genus for H 2 O 2 decomposition in food applications. Pol. J. Chem. Technol. 20(4). DOI: 10.2478/pjct-2018-0052.
  • 18. Fisher, J., Guidini, C.Z., Soares Santana, L.N., de Resende, M.M., Cardoso, W.L., Ribeiro, E.J. (2013). Optimization and modeling of lactose hydrolysis in a packed bed system using immobilized β- galactosidase from Aspergillus oryzae. J. Mol. Catal. B: Enzymatic 85–86, 178–186. DOI: 10.1016/j.molcatb.2012.09.008.
  • 19. Barancewicz, M. & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Pol. J. Chem. Technol . 66(2), 85–90. DOI: 10.2478/s11696-011-0088-0.
  • 20. Trusek-Holownia, A. (2008). Wastewater treatment in a microbial membrane bioreactor – a model of the proces. Desalination 221(1–3), 552–558. DOI: 10.1016/j.desal.2007.01.116.
  • 21. Chon, K., Lee, K., Kim, I.S. & Jang, A. (2016). Performance assessment of a submerged membrane bioreactor using a novel microbial consortium. Bioresour.Technol . 210, 2–10. DOI: 10.1016/j.biortech.2016.01.013.
  • 22. Atra, R., Vatai, G. & Bekassy-Molnar, E. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J. Foof Eng . 67 (3), 325–332. DOI: 10.1016/j.foodeng.2004.04.035.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Brak poz. 15 bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50abaf6c-635e-465c-af36-5bd364e552d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.