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Abstract: Due to the possibility of producing high quality and low cost silicon substrates the

Epitaxial Lateral Overgrowth technology may find its application in the photovoltaic industry.

However, a lateral growth process depends on many technological parameters such as the

temperature of the system, the cooling rate, the solvent or the geometry of the mask. For

this reason finding optimized settings for these factors in experimental research is difficult and

time consuming. Numerical analysis of the growth process leads to better understanding of the

fundamentals of the growth process. For this reason a computational model of epitaxial growth

was proposed. This paper focuses on the accuracy of the numerical solution of the mass transport

process during epitaxial growth. The method was implemented in the Matlab environment for

the moving boundary application. The results of the calculations are presented.
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1. Introduction

Epitaxial Lateral Overgrowth (ELO) is the crystal growth technology in

which the thin film layer crystallizes on a substrate covered by a dielectric mask

with opened windows in it. The major point of ELO is to reduce the defect density

in the grown layer. A more detailed description of the ELO technology as well as

the LPE method can be found in the papers [1–4].

The numerical model proposed for the solution of the epitaxial lateral over-

growth process from the liquid phase assumes a two dimensional computational

domain. The major point in this approach is the geometry of the domain which

has to change in time because of the moving interface during the crystalliza-

tion process. For this reason the domain consists of two grids. One of them is
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a triangular mesh which stores information about the concentration field in the

domain. The second grid represents the interface of the moving front. Unlike to

other simulation works [5–7] the assumption of the proposed model is that the

epitaxial growth is only diffusion controlled and the mass transfer is the main

process to reach thermodynamic equilibrium between the solid and liquid phase

on the interface. The growth rate of the layer interface is obtained from the gra-

dient of concentration of the solute atoms in front of the interface. For this reason

the precision of calculation of the gradients is the most important factor of the

simulation process. A more detailed description of the proposed model can be

found in other papers of the author [8–10].

In this paper the attention was paid to this stage of the process in which the

mass transport of the solution is calculated. The solution of the mass transport

problem including the moving boundary problem was implemented in the Matlab

software. The advantage of the chosen environment is the possibility of using an

adaptive grid method which leads to a higher accuracy of the solution in the

interface area.

2. Basic conception of approach

The main concept of the developed model is to calculate the silicon mass

transport from the Si-Sn liquid into the Si substrate. The simulation has to be done

including the moving boundary of the Si layer interface due to the crystallization

process which occurs during epitaxial growth.

The overall computational procedure of the developed application consists

of the following steps:

1. Set the initial parameters of the simulation and calculation domain.

2. Set the boundary conditions for the interface.

3. Generate a triangular adaptive mesh for a given geometry of the domain.

4. Calculate the mass transfer of Si in the liquid solution on the triangular mesh

and the growth rates in the vicinity of the epitaxial interface.

5. Interpolate the Si concentration profile from the PDE triangular mesh to the

rectangular Cartesian grid.

6. Modify the position of the interface on the basis of the calculated growth rates.

7. Update the geometry of the domain and return to step 3.

Attention in this paper was paid to the calculations of the concentration

profiles on the triangular and rectangular grid. However, the whole process has

been briefly described in order to better understand this step of modeling.

2.1. Geometry of the domain and boundary conditions

The polygon object which represents a set of points was used to draw

the geometry of the calculation domain with the use of command line functions.

Information about the coordinates for each point is stored in the geometry matrix.

It consists of two kinds of elements. The first one is fixed and determines the walls

and mask regions of the growth substrate. The second element is the moving one
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which changes its position in time. These elements represent the moving front of

the layer. Due to the interface movement the geometry matrix has to be updated

after each time step of the calculation process. An example of the domain with

few elements as well as the geometry matrix are shown in Figure 1.

Figure 1. Example of geometry and boundary domain

The Neumann boundary conditions were used for fixed elements. A similar

no flux condition was used for elements which represent the dielectric mask.

For moving elements, the Dirichlet condition was set in order to control the

equilibrium concentration of Si on the interface. The boundary conditions were

specified in a matrix which was created for the described geometry matrix.

In the Matlab environment the Dirichlet boundary condition is:

hu= r (1)

where h in general is a function of x, y, u is the solution and r is the value of

the solution on the boundary segments. In the presented approach h = 1. The

generalized Neumann boundary condition equation is:

~n ·(c ·∇u)+qu= g (2)

where ~n is the outward unit normal, g and q are functions defined on the boundary

segments and u is the solution. In order to obtain the isolation condition for

vertical walls and mask regions coefficients q and g were set equal to zero.

2.2. Mass transfer and interface evolution

On the basis of the given geometry and boundary conditions a triangular

mesh was created. Minimal regions were triangulated into subdomains and border

segments and boundary segments were broken up into edges. The mesh refinement

method was used for higher precision of the calculation in the moving interface

area.
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The mass transport equation had to be solved to obtain the concentration

profile on a given mesh. In the Matlab environment parabolic PDE is given by

the following equation:

d
∂u

∂t
−∇·(c ·∇u)+au= f (3)

For the simulation of epitaxial growth from the liquid phase, the coefficients

were set as follows: d=1, a=0, f =0. Parameter c is the diffusion coefficient of

the solute in the solution, and u is the concentration of the solute in the solution.

On the basis of the calculated profiles the growth rate in the normal

direction to the interface can be determined and therefore the layer interface

evolution can be obtained. The process of epitaxial lateral overgrowth modeling

requires high precision of concentration profile calculations in the vicinity of the

growing interface. It should be emphasized that calculations of the layer interface

movement have to be done at the same time as the mass transport calculation.

For this reason, it is necessary to use a rectangular grid for keeping the values of

concentration profiles after each time step of the simulation process. The results of

calculations of the concentration profiles with the use of the interpolation method

for triangular and rectangular meshes are shown in the next section.

3. Results and discussion

The main stage of the simulation process was the calculation of the

concentration profile with the moving boundary problem included. A computer

implementation of the model for the irregular domain had to be verified on the

basis of the known analytical solution. Special attention was paid to the size of

the triangular and regular mesh. The efficiency of the used method was compared

to the results obtained with the use of the standard Euler and Crank-Nicholson

scheme.

Figure 1 shows the computational domain which was used to verify the

developed modules. A triangular mesh with 102 elements was generated. The

Dirichlet boundary condition was used on the borders of the domain. An analytical

solution for the presented area can be obtained from Equation (4):

u= e−2π
2
Dtcos(π ·x)sin(π ·y) (4)

where D=1, Ω= [−1,1]× [−1,1] and u is the concentration profile.
The concentration profile calculated on the basis of Equation (4) and

triangular grid (Figure 2) is presented in Figure 3. As the domain geometry

changes in time, the calculated profile was interpolated on a Cartesian rectangular

grid. Examples of the results of the interpolation with different sizes of rectangular

grids are shown in Figures 4(a) and 4(b).

As can be seen in Figure 4(a) the regular grid size is not sufficient, especially

for the borders. For this reason it was necessary to increase the number of nodes

in the regular grid. A detailed error analysis with the use of Equations (5)–(7)
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Figure 2. Calculation domain with triangular mesh, number of elements ∼ 102

Figure 3. Concentration profile obtained for the domain presented in Figure 1

allows obtaining an optimal size of the triangular grid as well as the Cartesian

rectangular grid:

L1=
1

m

m
∑

i=1

|ei| (5)

L2=

[

1

m

(

m
∑

i=1

|ei|2
)]

1

2

(6)

Lmax=max|e| (7)

where m determines the amount of data, ei determines the error of the numerical

solution compared to the analytical one for a given (x,y) node.
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Figure 4. Concentration profiles interpolated from triangular into cartesian rectangular grid

of different size

In the following example the results of calculations for a more irregular

domain are shown. The shape of the domain is given by the parametric equations:

x(θ)= 0.02
√
5+
(

0.5+0.2 ·sin(5θ)
)

·cos(θ) (8)

y(θ)= 0.02
√
5+
(

0.5+0.2 ·sin(5θ)
)

·sin(θ) (9)

where θ∈ [0,2π].
Similarly to the previous example, the Dirichlet condition was set for each

boundary. The analytical solution in time is given by Equation (10)

u= e−2t sin(x)sin(y) (10)

Figures 5(a)–(b) show the calculation domain described by Equations (8)

and (9) with the triangular mesh of different sizes. It should be pointed out that

the number of triangles increases in the region with a high radius of curvature. The

increasing number of triangles leads to the increasing accuracy of the calculation

in this area of the domain.
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Figure 5. Calculation domain with triangular grid of different sizes

Tables 1 to 3 show the analysis of the solution for a different number of

nodes in the triangle and regular mesh.

Table 1. Results of error calculations for different sizes of regular mesh. The number

of elements in the triangular mesh is approximately 7 ·102

Number of nodes L1 L2 Lmax

225×225 3.49 ·10−5 7.09 ·10−5 3.17 ·10−4

449×449 3.47 ·10−5 7.08 ·10−5 3.17 ·10−4

Table 2. Results of error calculations for different sizes of regular mesh. The number

of elements in the triangular mesh is approximately ∼ 3 ·103

Number of nodes L1 L2 Lmax

225×225 8.47 ·10−6 1.71 ·10−5 1.02 ·10−4

449×449 8.40 ·10−6 1.70 ·10−5 1.02 ·10−4
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Table 3. Results of calculations for different sizes of regular mesh. The number of elements in

the triangular mesh is approximately ∼ 104

Number of nodes L1 L2 Lmax

225×225 2.09 ·10−6 4.19 ·10−6 3.14 ·10−5

449×449 2.05 ·10−6 4.13 ·10−6 3.11 ·10−5

It can be seen that the precision of the calculation increases with the in-

creasing number of triangle elements. However, the increasing number of elements

in the regular mesh does not lead to any significant improvement. It means that

the size of the triangular mesh determines the optimal size of the Cartesian grid.

Figures 6 and 7 show a comparison of the calculation results obtained with

the use of our method with Euler and Crank-Nicholson standard techniques of

solving differential equations. As can be seen the proposed method leads to high

precision of calculation using a smaller number of nodes compared to standard

techniques.

Figure 6. Results of error calculation of Lmax for our method and Euler method

4. Conclusion

The Epitaxial Lateral Overgrowth method with the use of the Liquid Phase

Epitaxy technique can be one of the promising techniques for future development

of cost-efficient solar cells. Using the low cost and simple apparatus it is possible

to produce high quality layers on low cost substrates. However, there are many

technological parameters which have to be determined in order to obtain layers

with an as high as possible aspect ratio. It requires numerous technological

experiments. For this reason, numerical analysis seems to be a good solution as
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Figure 7. Comparison of efficiency of presented here method with Euler and Crank

Nicholson techniques

it reduces the amount of experimental work and in consequence, the cost of the

optimizing process. The developed computational model of the epitaxial growth

requires high accuracy of concentration profile calculations especially near the

moving interface. For this reason special modules implemented in the Matlab

environment were created and verified in this paper. The results of the test show

that the proposed solution works well and uses fewer computer resources than

other numerical methods.
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