PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Environmental Parameters of the GTM 400 Turbojet Engine During the Co-Combustion of JET A-1 Jet Oil with Hydrogen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the possibility of co-combustion of conventional aviation fuel (JET A-1 jet fuel) with hydrogen (H2). The tested miniature turbojet engine was adapted to co-combust of both fuels. The results obtained from the research provide a positive premise for the application and implementation of hydrogen co-combustion (or combustion) technology in aircraft turbojet engines, which has not yet found industrial application. Observations and research show that co-combustion of jet fuel with hydrogen helps reduce the carbon footprint of the use of turbojet aircraft engines and also reduces other harmful substances (e.g. carbon monoxide, nitrogen oxides or solid particles). During the tests, no deterioration of the engine’s operating parameters was observed and the set operating parameters were maintained. To summarize, the technology of co-combustion or hydrogen combustion in miniature turbojet engines is an indicated direction in the development of pro-ecological aircraft engines.
Słowa kluczowe
Rocznik
Strony
205--211
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Institute of Thermal Energy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Inspectorate of Armed Forces Support, Aviation Engineering Division, ul. Dwernickiego 1, 85-915 Bydgoszcz, Poland
  • Institute of Structural Analysis, Faculty of Civil and Transport Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Andoga R., Főző L., Schrötter M., Szabo S. 2021. The Use of Ethanol as an Alternative Fuel for Small Turbojet Engines. Sustainability, 13, 2541.
  • 2. Antolini J., Sementa P., Tornatore C., Catapano F., Vaglieco B.M., Desantes J.M., López J.J. 2023. Effect of passive pre-chamber orifice diameter on the methane combustion process in an optically accessible SI engine. Fuel, 341, 126990.
  • 3. Aygun H., Cilgin M.E., Turan O. 2021. Exergosustainability indicators of a target drone engine at dynamic loads. Energy, 221, 119803.
  • 4. Benini E., Giacometti S. 2007. Design, manufacturing and operation of a small turbojet-engine for research purposes. Applied Energy, 84(11), 1102–1116.
  • 5. Cican G., Gall M., Bogoi A., Deaconu M., Crunțeanu D.E. 2023. Experimental Investigation of a Micro Turbojet Engine Chevrons Nozzle by Means of the Schlieren Technique. Inventions, 8(145).
  • 6. Ciupek B., Gołoś K. 2020. Concentration of Nitrogen Oxides when Burning Wood Pellets of Various Origins. Journal of Ecological Engineering, 21(5), 229–233.
  • 7. Ciupek B., Judt W., Gołoś K., Urbaniak R. 2021. Analysis of low-power boilers work on real heat loads: A case of Poland. Energies, 14(11), 3101-1-13.
  • 8. Ciupek B. 2022. Laboratorium spalania paliw kopalnych i biomasy. Wydawnictwo Politechniki Poznańskiej.
  • 9. Dinara S.H., Bramantya M.A. 2021. Design and CFD simulation of centrifugal compressor for mini jet-turbine engine 200 N thrust. AIP Conference Proceedings, 2403, 040006.
  • 10. Dittrich A., Procházka R., Popelka J., Phu D.N. 2023. Effect of HVO CNG dual-fuel operation mode on emissions and performance of CI engine. Engineering For Rural Development, 24, 58–63.
  • 11. Gardyński L., Kałdonek J., Caban J. 2020. Testing of lubricating properties of mixtures of diesel and RME biofuels with the addition of linoleic acid. The Archives of Automotive Engineering, 87(1), 57–66.
  • 12. Fentaye A.D., Baheta A.T., Gilani S.I., Kyprianidis K.G. 2019. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace, 6(83).
  • 13. Gawron B., Białecki T. 2018. Impact of a Jet A-1/ HEFA blend on the performance and emission characteristics of a miniature turbojet engine. Int. J. Environ. Sci. Technol. 15, 1501–1508.
  • 14. Gieras M. 2016. Miniaturowe silniki odrzutowe. Oficyna Wydawnicza Politechniki Warszawskiej.
  • 15. Henzel M., Falkowski K., Olejnik A. 2018. The analysis of “more electric engine” technology to improve the environmental performance of aircraft jet engine. E3S Web of Conferences, 46(2018), 1–8, 00029.
  • 16. Hunicz J., Mikulski M., Rybak A. 2023. Tyre pyrolytic oil blends in a state-of-the-art compression ignition engine: Towards fuel-optimised combustion. Fuel, 353, 129281.
  • 17. Joy J., Wang P., Yu S. 2019. Effect of geometric modification on flow behaviour and performance of reverse flow combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(4), 1457–1471.
  • 18. Joy J., Wang P.C., Panisilvam J. 2020. Numerical Investigation of NOx Emission Reduction in Non-Premixed Lean Reverse-Flow Combustor in a Micro Gas Turbine Engine. Emiss. Control Sci. Technol, 6, 285–300.
  • 19. Kendra M., Skrúcaný T., Dolinayová A., Čamaj J., Jurkovič M., Csonka B., Abramović B. 2023. Environmental burden of different transport modes – Real case study in Slovakia. Transportation Research Part D: Transport and Environment, 114, 103552.
  • 20. Khandare A., Sawant M., Pawar R., Kamble S., Waghmare S.N. 2023. Design and Fabrication of Jet Engine Using automotive Turbocharger. International Research Journal of Modernization in Engineering Technology and Science, 5(4), 4085-4089.
  • 21. Kobaszyńska-Twardowska A., Łukasiewicz J., Sielicki P.W. 2022. Risk Management Model for Unmanned Aerial Vehicles during Flight Operations. Materials, 15(7), 2448.
  • 22. Koleini I., Roudbari A., Marefat V. 2018. EGT prediction of a micro gas turbine using statistical and artificial intelligence approach. IEEE Aerospace and Electronic Systems Magazine, 33(7), 4–13.
  • 23. Małek A., Karowiec R., Jóżwik K. 2023. A review of technologies in the area of production, storage and use of hydrogen in the automotive industry. The Archives of Automotive Engineering, 102(4), 41–67.
  • 24. Mansor M., Shioji M. 2016. Investigation of the combustion process of hydrogen jets under argoncirculated hydrogen-engine conditions. Combustion and Flame, 173, 245–257.
  • 25. Metin E.Y., Aygün H. 2019. Energy and power aspects of an experimental target drone engine at non-linear controller loads. Energy, 185, 981–993.
  • 26. Muckova P., Kalabza O., Famfulik J., Smiraus J., Siroky J., Mikova J. 2023. Engine intake airbox CFD optimisation and experimental validation tests. MM Science Journal, 6364–6367.
  • 27. Prokopowicz W., Śniegóła R. 2020. Lojalny skrzydłowy – przykłady rozwiązań. Nauka dla obronności i środowiska, Politechnika Poznańska, 187–200.
  • 28. Prokopowicz W., Frąckowiak A. 2023. A proposal of a hydrogen injection system in to a miniature turbojet engine. Jurnal of KONBIN, 79–93.
  • 29. Rayapureddy S.M., Matijošius J., Rimkus A., Caban J., Słowik T. 2022. Comparative Study of Combustion, Performance and Emission Characteristics of Hydrotreated Vegetable Oil–Biobutanol Fuel Blends and Diesel Fuel on a CI Engine. Sustainability, 14, 7324.
  • 30. Sahoo S., Zhao X., Kyprianidis K.A. 2020. Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace, 7(44).
  • 31. Semkło Ł. 2020 Zagrożenia i normy związane z wodorem. Nauka dla Obronności – Bezpieczeństwo Infrastruktury Krytycznej, Wydawnictwo ITWL, 237–243.
  • 32. Synak F., Synak J., Skrucany T. 2021. Assessing the addition of hydrogen and oxygen into the engine’s intake air on selected vehicle features. International Journal of Hydrogen Energy, 46, 62, 31854–31878.
  • 33. Szewc S., Miękina A., Brzyszko T., Czarnigowski J., Górski W., Marszał P. 2021. Comparative analysis of the hybrid power system topology for a high efficiency prototype vehicle. Journal of Physics: Conference Series, 2130, 012032.
  • 34. Šarkan B., Kuranc A., Sejkorova M., Caban J., Loman M. 2022. Porównanie emisji spalin z silników pojazdów ciężarowych zasilanych olejem napędowym (ON) oraz gazem ziemnym (LNG) w warunkach rzeczywistej eksploatacji. Przemysł Chemiczny, 101, 1, 2022, 37–41.
  • 35. Veselík P., Sejkorová M., Nieoczym A., Caban J. 2020. Outlier Identification of Concentrations of Pollutants in Environmental Data Using Modern Statistical Methods. Polish Journal of Environmental Studies, 29(1), 853–860.
  • 36. Zhao Y.P., Hu Q.K., Xu J.G., Li B., Huang G., Pan Y. T. 2018. A robust extreme learning machine for modeling a small-scale turbojet engine. Applied Energy, 218, 22–35.
  • 37. Zhao Y.P., Tan J.F., Wang J.J., Yang Z. 2016. Closs based extreme learning machine for estimating power of small-scale turbojet engine. Aerospace Science and Technology, 89, 407–419.
  • 38. Ziya Sogut M. 2020. Assessment of small scale turbojet engine considering environmental and thermodynamics performance for flight processes. Energy, 200, 117519.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50aa536a-0ff6-495d-ab58-aef8eff41140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.