PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of multi-criteria decision making methods for the assessment of optimal SVC location

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of multi-criteria decision making (MCDM) is to select the most appropriate of the alternatives by evaluating many conflicting criteria together. MCDM methods are widely available in the literature and have been used in various energy problems. The key problems studied in electrical power systems in recent years have included voltage instability and voltage collapse. Different flexible alternating current transmission systems (FACTS) equipment has been used for this purpose for decades, increasing voltage stability while enhancing system efficiency, reliability and quality of supply, and offering environmental benefits. Finding the best locations for these devices in terms of voltage stability in actual electrical networks poses a serious problem. Many criteria should be considered when determining the most suitable location for the controller. The aim of this paper is to provide a comparative analysis of MCDM techniques to be used for optimal location of a static VAR compensator (SVC) device in terms of voltage stability. The ideal location can be determined by means of sorting according to priority criteria. The proposed approach was carried out using the Power System Analysis Toolbox (PSAT) in MATLAB in the IEEE 14-bus test system. Using ten different MCDM methods, the most appropriate locations were compared among themselves and a single ranking list was obtained, integrated with the Borda count method, which is a data fusion technique. The application results showed that the methods used are consistent among themselves. It was revealed that the integrated model was an appropriate method that could be used for optimal location selection, providing reliable and satisfactory results to power system planners.
Rocznik
Strony
art. no. e140555
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Faculty of Technology, Marmara University, ˙Istanbul 34722, Turkey
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, Dicle University, Diyarbakır 21680, Turkey
Bibliografia
  • [1] G.N. Kumar and M.S. Kalavathi, “Cat Swarm Optimization for optimal placement of multiple UPFC’s in voltage stability enhancement under contingency,” Int. J. Electr. Power Energy Syst., vol. 57, pp. 97–104, 2014, doi: 10.1016/j.ijepes.2013.11.050.
  • [2] A. Gupta and P.R. Sharma, “Static and transient voltage stability assessment of power system by proper placement of UPFC with POD controller,” WSEAS Trans. Power Syst., vol. 8, no. 4, pp. 197–206, 2013.
  • [3] D. Lu and X. Zhang, “Transient stability analysis and control of power systems with considering flux decay by energy function approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 1, pp. 3–8, 2012, doi: 10.2478/v10175-012-0001-1.
  • [4] R. Sirjani, A. Mohamed, and H. Shareef, “Optimal allocation of shunt Var compensators in power systems using a novel global harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 562–572, 2012, doi: 10.1016/j.ijepes.2012.05.068.
  • [5] M. El-Azab, W.A. Omran, S.F. Mekhamer, and H.E.A. Talaat, “Allocation of FACTS devices using a probabilistic multiobjective approach incorporating various sources of uncertainty and dynamic line rating,” IEEE Access, vol. 8, pp. 167647–167664, 2020, doi: 10.1109/ACCESS.2020.3023744.
  • [6] A.A. Sadiq, S.S. Adamu, and M. Buhari, “Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS,” Eng. Sci. Technol. Int. J., vol. 22, no. 1, pp. 33–46, 2019, doi: 10.1016/j.jestch.2018.09.013.
  • [7] A.A. Shehata, A. Refaat, and N.V. Korovkin, “Optimal allocation of FACTS devices based on multi-objective multi-verse optimizer algorithm for multi-objective power system optimization problems,” in International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2020, doi: 10.1109/FarEastCon50210.2020.9271359.
  • [8] S. Galvani, M.T. Hagh, M.B.B. Sharifian, and B. Mohammadi-Ivatloo, “Multiobjective predictability-based optimal placement and parameters setting of UPFC in wind power included power systems,” IEEE Trans. Ind. Inform., vol. 15, no. 2, pp. 878–888, 2019, doi: 10.1109/TII.2018.2818821.
  • [9] Y. Amrane and N.E.L.Y. Kouba, “A multiobjective optimal VAR dispatch using FACTS devices considering voltage stability and contingency analysis,” in Predictive Modelling for Energy Management and Power Systems Engineering, 1st ed., Elsevier, 2020, ch. 1, pp. 1–26, doi: 10.1016/B978-0-12-817772-3.00001-X.
  • [10] S.K. Mahmoudi, M.E.H. Golshan, and R. Zamani, “Coordinated voltage control scheme for transmission system considering objectives and constraints of network and control devices,” Electr. Power Syst. Res., vol. 192, 2020, doi: 10.1016/j.epsr.2020.106908.
  • [11] J. Zhou, Y. Wu, C. Wu, F. He, B. Zhang, and F. Liu, “A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing,” Energy Convers. Manag., vol. 205, p. 112340, 2020, doi: 10.1016/j.enconman.2019.112340.
  • [12] J.M. Sanchez-Lozano, J. Teruel-Solano, P.L. Soto-Elvira, and M.S. Garcia-Cascales, “Geographical information systems (GIS) and multi-criteria decision making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain,” Renew. Sustain. Energy Rev., vol. 24, pp. 544–556, 2013, doi: 10.1016/j.rser.2013.03.019.
  • [13] G. Villacreses, G. Gaona, J. Martinez-Gomez, and D.J. Jijon, “Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador,” Renew. Energy, vol. 109, pp. 275–286, 2017, doi: 10.1016/j.renene.2017.03.041.
  • [14] B. Ceballos, M.T. Lamata, and D.A. Pelta, “A comparative analysis of multi-criteria decision-making methods,” Prog. Artif. Intell., vol. 5, no. 4, pp. 315–322, 2016, doi: 10.1007/s13748-016-0093-1.
  • [15] N. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology Flexible AC Transmission Systems. vol. 1, New York, NY, USA: IEEE Press, 2000, pp. 1–35.
  • [16] H.R. Muhammed, Power Electronics, Devices, Circuits and Applications. 4th ed., Essex, England: Pearson Education, 2014, pp. 626–657.
  • [17] N.A. Skaria, S. Baby, and D.M. Anumodu, “Genetic algorithm based optimal location of SVC in power system for voltage stability enhancement,” in Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, 2014, pp. 1–6, doi: 10.1109/AICERA.2014.6908188.
  • [18] E. Aycin, Multi Criteria Decision Making: Computer Applied Solutions. Ankara, Turkey: Nobel Academic Publishing (in Turkish), 2020, pp. 4–10.
  • [19] P.K. Pramanik, S. Biswas, S. Pal, D. Marinković, and P. Choudhury, “A Comparative Analysis of Multi-Criteria Decision-Making Methods for Resource Selection in Mobile Crowd Computing,” Symmetry, vol. 13, no. 9, p. 1713, 2021, doi: 10.3390/sym13091713.
  • [20] I. Siksnelyte-Butkiene, E.K. Zavadskas, and D. Streimikiene, “Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review,” Energies, vol. 13, no. 5, p. 1164, 2020, doi: 10.3390/en13051164.
  • [21] M. Velasquez and P. Hester, “An analysis of multi-criteria decision making methods,” Int. J. Oper. Res., vol. 10, no. 2, pp. 56–66, 2013.
  • [22] I. Siksnelyte, E.K. Zavadskas, D. Streimikiene, and D. Sharma, “An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues,” Energies, vol. 11, no. 10, p. 2754, 2018, doi: 10.3390/en11102754.
  • [23] A. Malek, S. Ebrahimnejad, and R. Tavakkoli-Moghaddam, “An Improved Hybrid Grey Relational Analysis Approach for Green Resilient Supply Chain Network Assessment,” Sustainability, vol. 9, no. 8, p. 1433, 2017, doi: 10.3390/su9081433.
  • [24] S. Bakar, N. Harish, A. Kahartini, S. Agos, H. Nasir, E. Tahir, and E. Janisip, “Application of Graph Theory and Matrix Approach as Decision Analysis Tool for Smartphone Selection,” ASM Sci. J., vol. 12, no. 6, pp. 53–59, 2019.
  • [25] H.H. Goh, B.C. Kok, H.T. Yeo, S.W. Lee, and A.A.M. Zin, “Combination of TOPSIS and AHP in load shedding scheme for large pulp mill electrical system,” Int. J. Electr. Power Energy Syst., vol. 47, pp. 198–204, 2013, doi: 10.1016/j.ijepes.2012.10.059.
  • [26] T. Witkowski, P. Antczak, and A. Antczak, “Multi-objective decision making and search space for the evaluation of production process scheduling,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 57, no.3, pp. 195–208, 2009, doi: 10.2478/v10175-010-0121-4.
  • [27] S. Liu, Q. Zhao, M. Wen, L. Deng, S. Dong, and C. Wang, “Assessing the impact of hydroelectric project construction on the ecological integrity of the Nuozhadu Nature Reserve, southwest China,” Stoch. Environ. Res. Risk Assess., vol. 27, no. 7, pp. 1709–1718, 2013.
  • [28] A. Awasthi and S.S. Chauhan, “Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions,” Environ. Model. Software, vol. 26, no. 6, pp. 787–796, 2011, doi: 10.1016/j.envsoft.2010.11.010.
  • [29] S.R. Marjani, V. Talavat, and S. Galvani, “Optimal allocation of D-STATCOM and reconfiguration in radial distribution network using MOPSO algorithm in TOPSIS framework,” Int. Trans. Electr. Energy Syst., vol. 29, no. 2, p. e2723, 2019, doi: 10.1002/etep.2723.
  • [30] T. Mythili and R. Thanigaivelan, “Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.6, pp. 1403–1412, 2020, doi: 10.24425/bpasts.2020.135382.
  • [31] C. Li, M. Negnevitsky, X. Wang, W.L. Yue, and X. Zou, “Multi-criteria analysis of policies for implementing clean energy vehicles in China,” Energy Policy, vol. 129, pp. 826–840, 2019, doi: 10.1016/j.enpol.2019.03.002.
  • [32] K.G. Saravanan, R. Thanigaivelan, and M. Soundarrajan, “Comparison of electrochemical micromachining performance using TOPSIS, VIKOR and GRA for magnetic field and UV rays heated electrolyte,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, p. e138816, 2021, doi: 10.24425/bpasts.2021.138816.
  • [33] E. Zavadskas, Z. Turskis, J. Antucheviciene, and A. Zakarevicius, “Optimization of weighted aggregated sum product assessment,” Elektron. ir Elektrotech., vol. 122, no. 6, pp. 3–6, 2012, doi: 10.5755/j01.eee.122.6.1810.
  • [34] T. Balezentis and D. Streimikiene, “Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation,” Appl. Energy, vol. 185, no. 1, pp. 862–871, 2017, doi: 10.1016/j.apenergy.2016.10.085.
  • [35] N.K. Geetha and P. Sekar, “Graph theory matrix approach – a qualitative decision making tool,” Mater. Today, vol. 4, no. 8, pp. 7741–7749, 2017, doi: 10.1016/j.matpr.2017.07.109.
  • [36] M.A. Nikouei, M. Oroujzadeh, and S. Mehdipour-Ataei, “The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell,” Energy, vol. 119, pp. 77–85, 2017, doi: 10.1016/j.energy.2016.12.052.
  • [37] E. Kose, S. Burmaoglu, and M. Kabak, “Grey relational analysis between energy consumption and economic growth,” Grey Syst., vol. 3, no. 3, pp. 291–304, 2013, doi: 10.1108/GS-06-2013-0010.
  • [38] W. Karel, W. Brauers, and E. Zavadskas, “The MOORA method and its application to privatization in a transition economy,” Control. Cybern., vol. 35, no.2, pp. 445–469, 2006.
  • [39] Z.H. Li, “An extension of the MULTIMOORA method for multiple criteria group decision making based upon hesitant fuzzy sets,” IMA J. Appl. Math., vol. 2014, no.2, pp. 1–16, 2014, doi: 10.1155/2014/527836.
  • [40] E.K. Zavadskas, Z. Turskis, and T. Vilutiene, “Multiple criteria analysis of foundation instalment alternatives by applying additive ratio assessment (ARAS) method,” Arch. Civ. Mech. Eng., vol. 10, no. 3, pp. 123–141, 2010, doi: 10.1016/S1644-9665(12)60141-1.
  • [41] D. Streimikiene, J. Sliogeriene, and Z. Turskis, “Multi-criteria analysis of electricity generation technologies in Lithuania,” Renew. Energy, vol. 85, pp. 148–156, 2016, doi: 10.1016/j.renene.2015.06.032.
  • [42] E.K. Zavadskas, A. Kaklauskas, and T. Vilutiene, “Multicriteria evaluation of apartment blocks maintenance contractors: Lithuanian case study,” Int. J. Strateg. Prop. Manag., vol. 13, no. 4, pp. 319–338, 2009, doi: 10.3846/1648-715X.2009.13.319-338.
  • [43] G.N. Yucenur, S. Caylak, G. Gonul, and M. Postalcioglu, “An integrated solution with SWARA&COPRAS methods in renewable energy production: City selection for biogas facility,” Renew. Energy, vol. 145, pp. 2587–2597, 2020, doi: 10.1016/j.renene.2019.08.011.
  • [44] N. Kundakcıand A. Isik, “Integration of MACBETH and CO-PRAS methods to select air compressor for a textile company,” Decis. Sci. Lett., vol. 5, no. 3, pp. 381–394, 2016, doi: 10.5267/j.dsl.2016.2.003.
  • [45] I. Topcu, F. Ulengin, O. Kabak, M. Isik, B. Unver, and S.O. Ekici, “The evaluation of electricity generation resources: The case of Turkey,” Energy, vol. 167, pp. 417–427, 2019, doi: 10.1016/ j.energy.2018.10.126.
  • [46] V. Ajjarapu and C. Christy, “The continuation power flow: A tool for steady state voltage stability analysis,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 416–423, 1992, doi: 10.1109/59.141737.
  • [47] M.M. Aman, G.B. Jasmon, A.H. A. Bakar, and H. Mokhlis, “Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 123–133, 2014, doi: 10.1016/ j.ijepes.2013.06.026.
  • [48] A.S. Telang and P.P. Bedekar, “Systematic approach for optimal placement and sizing of STATCOM to assess the voltage stability,” in International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 2016, pp. 1–6, doi: 0.1109/ICCPCT.2016.7530132.
  • [49] F. Aydin and B. Gumus, “Determining optimal SVC location for voltage stability using multi-criteria decision making based solution: Analytic hierarchy process (AHP) approach,” IEEE Access, to be published, 2021, doi: 10.1109/ACCESS.2021.3121196.
  • [50] R. Benabid and M. Boudour, “Optimal location and size of SVC and TCSC for multi-objective static voltage stability enhancement,” RE&PQJ, vol. 1, no. 6, pp. 175–180, 2008, doi: 10.24084/ repqj06.256.
  • [51] R. Hari Kumar, N. Mayadevi, V.P. Mini, and S. Ushakumari, “Transforming distribution system into a sustainable isolated microgrid considering contingency,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no.5, pp. 871–881, 2019, doi: 10.24425/bpasts.2019.130875.
  • [52] A. Laifa and A. Medoued, “Optimal FACTS location to enhance voltage stability using multi-objective harmony search,” in International Conference on Electric Power and Energy Conversion Systems (EPECS), Istanbul, Turkey, 2013, pp. 1–6, doi: 10.1109/EPECS.2013.6712990.
  • [53] A.R. Phadke, M. Fozdar, and K.R. Niazi, “A new multi-objective fuzzy-GA formulation for optimal placement and sizing of shunt FACTS controller,” Int. J. Electr. Power Energy Syst., vol. 40, no. 1, pp. 46–53, 2012, doi: 10.1016/j.ijepes.2012.02.004.
  • [54] F. Milano, “An open source power system analysis toolbox,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1199–1206, 2005, doi: 10.1109/TPWRS.2005.851911.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50a8c701-6745-40d9-a975-c38c41fda507
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.