PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Impact of Salinity Stress and ZnO-NPs on Macro and Micronutrient Assimilation: Unraveling the Link between Environmental Factors and Nutrient Uptake

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this experiment was to investigate the effects of salinity (NaCl) on the mineral composition and macro- and micronutrient contents of rice plants. The experiment was conducted at the Department of Biotechnology’s experimental area in SVPUAT Meerut. Various salinity treatments were applied, including T0 (Control), T1 (60 mM NaCl), T2 (80 mM NaCl), T3 (100 mM NaCl), T4 (ZnO NPs 50 mg/L + 60 mM NaCl), T5 (ZnO NPs 50 mg/L + 80 mM NaCl), and T6 (ZnO NPs 50 mg/L + 100 mM NaCl). The results analysis revealed that the micro- and micronutrients in rice genotypes decreased compared to the control treatment. However, when 50 mg/L of ZnO-NPs were applied, the concentrations of both macro- and micronutrient contents in rice plants were found to increase. This is the most significant finding of this research.
Słowa kluczowe
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Agricultural Biotechnology and 1 Department of Soil Science College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Department of Agricultural Biotechnology and 1 Department of Soil Science College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
  • Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
  • Department of Biology and Biotechnology, Faculty of Science, the Hashemite University, Zarqa, Jordan
  • Department of Agricultural Biotechnology and 1 Department of Soil Science College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
  • Department of Biological Sciences, Al Hussein bin Talal University, P.O. Box 20, Maan, Jordan
  • Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
  • Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
Bibliografia
  • 1. Abdel Latef, A.A.H., Abu Alhmad, M.F., Abdelfattah, K.E., 2017. The Possible Roles of Priming with ZnO Nanoparticles in Mitigation of Salinity Stress in Lupine (Lupinus termis) Plants. J. Plant Growth Regul. 36, 60–70. https://doi.org/10.1007/S00344-016-9618-X/FIGURES/6
  • 2. Abdelhamid, M.T., Sekara, A., Pessarakli, M., Alarcón, J.J., Brestic, M., El-Ramady, H., Gad, N., Mohamed, H.I., Fares, W.M., Heba, S.S., Sofy, M.R., El-Kafafi, E.S., 2020. New approaches for improving salt stress tolerance in rice. Rice Res. Qual. Improv. Genomics Genet. Eng. 247–268. https://doi.org/10.1007/978-981-15-4120-9_10
  • 3. Abuhatab, S., El-Qanni, A., Al-Qalaq, H., Hmoudah, M., Al-Zerei, W., 2020. Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles. J. Environ. Manage. 268, 110713. https://doi.org/10.1016/J.JENVMAN.2020.110713
  • 4. Adil, M., Bashir, Safdar, Bashir, Saqib, Aslam, Z., Ahmad, N., Younas, T., Asghar, R.M.A., Alkahtani, J., Dwiningsih, Y., Elshikh, M.S., 2022. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front. Plant Sci. 13, 2535. https://doi.org/10.3389/FPLS.2022.932861/BIBTEX
  • 5. Akter, M., Oue, H., 2018. Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agric., 8, 164. https://doi.org/10.3390/AGRICULTURE8100164
  • 6. Alabdallah, N.M., Alzahrani, H.S., 2020. The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions. Saudi J. Biol. Sci. 27, 3132–3137. https://doi.org/10.1016/J.SJBS.2020.08.005
  • 7. Alam, P., Arshad, M., Al-Kheraif, A.A., Azzam, M.A., Al Balawi, T., 2022. Silicon nanoparticle-induced regulation of carbohydrate metabolism, photosynthesis, and ROS homeostasis in solanum lycopersicum subjected to salinity stress. ACS Omega 7, 31834–31844. https://doi.org/10.1021/acsomega.2c02586/asset/images/large/ao2c02586_0008.jpeg
  • 8. Al‐Tawaha, A.M., Seguin, P., Smith, D.L., Beaulieu, C. 2005. Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Annals of Applied Biology, 146(3), 303-310.
  • 9. Al-Tawaha, A.R., Turk, M.A., Al-Tawaha, A.R. M., Alu'Datt, M.H., Wedyan, M., Al-Ramamneh, E.A.D.M., Hoang, A.T. 2018. Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian Journal of Agricultural Science, 24(3).
  • 10. Al-Tawaha, A.R., Al-Karaki, G., Al-Tawaha, A.R., Sirajuddin, S.N., Makhadmeh, I., Megat Wahab, P. E., et al. 2018. Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulgarian Journal of Agricultural Science, 24(5).
  • 11. Al-Tawaha, A.R.M. and Al-Ghzawi, A.L.A. 2013. Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Research on Crops, 14(2), 489-491
  • 12. Amanullah, Ilyas, M., Nabi, H., Khalid, S., Ahmad, M., Muhammad, A. et al. 2021. Integrated foliar nutrients application improve wheat (Triticum Aestivum L.) productivity under calcareous soils in drylands. Communications in Soil Science and Plant Analysis, 52(21), 2748-2766.
  • 13. Bekmirzaev, G., Ouddane, B., Beltrao, J., Fujii, Y., 2020. The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agric., 10, 238. https://doi.org/10.3390/AGRICULTURE10060238
  • 14. Bhatla, S.C. and Lal, M.A, 2018. Plant physiology, development and metabolism. Plant Physiol. Dev. Metab. https://doi.org/10.1007/978-981-13-2023-1
  • 15. Cakmak, I., 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302, 1–17. https://doi.org/10.1007/S11104-007-9466-3/figures/9
  • 16. Chhipa, H., 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15, 15–22. https://doi.org/10.1007/S10311-016-0600-4/metrics
  • 17. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., Schroeder, J.I., 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19, 371–379. https://doi.org/10.1016/J.TPLANTS.2014.02.001
  • 18. Elmer, P.A.G., Spiers, T.M., Wood, P.N., 2007. Effects of pre-harvest foliar calcium sprays on fruit calcium levels and brown rot of peaches. Crop Prot. 26, 11–18. https://doi.org/10.1016/J.CROPRO.2006.03.011
  • 19. Flowers, T.J., Colmer, T.D., 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115, 327–331. https://doi.org/10.1093/AOB/MCU267
  • 20. Grotz, N., Guerinot, M. Lou, 2006. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta 1763, 595–608. https://doi.org/10.1016/J.BBAMCR.2006.05.014
  • 21. Imran, A. and Al-Tawaha, A.R.M. 2021a. Carbon sources application increase wheat yield and soil fertility. Communications in Soil Science and Plant Analysis, 52(7), 695-703.
  • 22. Imran, A. and Al Tawaha, A.R.M. 2021b. Management of nano-black carbon, phosphorous and bio fertilizer improve soil organic carbon and ensilage biomass of soybean and maize. Communications in Soil Science and Plant Analysis, 52(22), 2837-2851
  • 23. Imran, A. and Al-Tawaha, A.R.M. 2020. The productivity of subsequent wheat enhanced with residual carbon sources and phosphorus under improved irrigation system. Communications in Soil Science and Plant Analysis, 51(10), 1306-1314.
  • 24. Kabir, A., Achakzai, K., Kayani, A., Hanif, A., 2010. Effect of salinity on uptake of micronutrients in sunflower at early vegetative stage. Pak. J. Bot 42, 129–139.
  • 25. Kumar, P., Sharma, P.K., 2020. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 4, 174. https://doi.org/10.3389/FSUFS.2020.533781/BIBTEX
  • 26. Lalarukh, I., Zahra, N., Al Huqail, A.A., Amjad, S.F., Al-Dhumri, S.A., Ghoneim, A.M., Alshahri, A.H., Almutari, M.M., Alhusayni, F.S., Al-Shammari, W.B., Poczai, P., Mansoora, N., Ayman, M., Abbas, M.H.H., Abdelhafez, A.A., 2022. Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environ. Technol. Innov. 27, 102799. https://doi.org/10.1016/J.ETI.2022.102799
  • 27. Lee, J., Campbell, C.M., 1969. Atomic Absorption Spectrophotometric and Ethylenediaminetetraacetate-Titration Methods for Calcium and Magnesium Determinations,. J. Dairy Sci. 52, 121–124. https://doi.org/10.3168/JDS.S0022-0302(69)86513-6
  • 28. Mahajan, P., Dhoke, S.K., Khanna A.S. 2011, Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, Article ID 696535. https://doi.org/10.1155/2011/696535
  • 29. Mahajan, S., Tuteja, N., 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444, 139–158. https://doi.org/10.1016/j.abb.2005.10.018
  • 30. Manganaris, G.A., Vasilakakis, M., Diamantidis, G., Mignani, I., 2005. Effect of calcium additives on physicochemical aspects of cell wall pectin and sensory attributes of canned peach (Prunus persica (L) Batsch cv Andross). J. Sci. Food Agric. 85, 1773–1778. https://doi.org/10.1002/JSFA.2182
  • 31. Martens, D.C., Lindsay, W.L., 2018. Testing Soils for Copper, Iron, Manganese, and Zinc. Soil Test. Plant Anal. 229–264. https://doi.org/10.2136/SSSABOOKSER3.3ED.C9
  • 32. Milani, N., Hettiarachchi, G.M., Kirby, J.K., Beak, D.G., Stacey, S.P., McLaughlin, M.J., 2015. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS One 10. https://doi.org/10.1371/journal.pone.0126275
  • 33. Mogazy, A.M., Hanafy, R.S., 2022. Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants. J. Soil Sci. Plant Nutr. 22, 2647–2662. https://doi.org/10.1007/S42729-022-00833-9/TABLES/8
  • 34. Monreal, C.M., Derosa, M., Mallubhotla, S.C., Bindraban, P.S., Dimkpa, C., 2015. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils, 523(52), 423–437. https://doi.org/10.1007/S00374-015-1073-5
  • 35. Priyanka, N., Geetha, N., Manish, T., Sahi, S.V., Venkatachalam, P., 2021. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol. Reports 8, 295–302. https://doi.org/10.1016/J.TOXREP.2021.01.016
  • 36. Rajput, V.D., Singh, A., Minkina, T.M., Shende, S.S., Kumar, P., Verma, K.K., Bauer, T., Gorobtsova, O., Deneva, S., Sindireva, A., 2021. Potential applications of nanobiotechnology in plant nutrition and protection for sustainable agriculture. Nanotechnol. Plant Growth Promot. Prot. 79–92. https://doi.org/10.1002/9781119745884.CH5
  • 37. Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., Ajayi, R.F., 2022. Green-synthesized zinc oxide nanoparticles mitigate salt stress in sorghum bicolor. Agric. 12, 597. https://doi.org/10.3390/AGRICULTURE12050597/S1
  • 38. Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., Biswas, P., 2016. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 7. https://doi.org/10.3389/FPLS.2016.01288
  • 39. Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428.
  • 40. Rostami Ajirloo, A.A., Amiri, E., 2022. Effects of nano-potassium fertilizer on yield and water use efficiency of soybean under water deficit conditions (Case study: Moghan Plain, Iran). 53, 1542–1551. https://doi.org/10.1080/00103624.2022.2060247
  • 41. Sarraf, M., Vishwakarma, K., Kumar, V., Arif, N., Das, S., Johnson, R., Janeeshma, E., Puthur, J.T., Aliniaeifard, S., Chauhan, D.K., Fujita, M., Hasanuzzaman, M., 2022. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 11, 316. https://doi.org/10.3390/plants11030316
  • 42. Sharifan, H., Moore, J., Ma, X., 2020. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 110177. https://doi.org/10.1016/j.ecoenv.2020.110177
  • 43. Singh, A., Rajput, V., Singh, A.K., Sengar, R.S., Singh, R.K., Minkina, T., 2021. Transformation techniques and their role in crop improvements: a global scenario of GM crops. Policy Issues Genet. Modif. Crop. 515–542. https://doi.org/10.1016/B978-0-12-820780-2.00023-6
  • 44. Singh, A., Sengar, R.S., Rajput, V.D., Minkina, T., Singh, R.K., 2022a. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agric., 12, 1014. https://doi.org/10.3390/agriculture12071014
  • 45. Singh, A., Sengar, R.S., Shahi, U.P., Rajput, V.D., Minkina, T., Ghazaryan, K.A., 2022b. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3, 33–46. https://doi.org/10.3390/stresses3010004/s1
  • 46. Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Alam, P., Hayat, S., 2021. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol. Environ. Saf. 213, 112020. https://doi.org/10.1016/j.ecoenv.2021.112020
  • 47. Singh, R., Sharma, R.R., Moretti, C.L., Kumar, A., Gupta, R.K., 2009. Foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry (F.×ananassa Duch.). Acta Hortic. 842, 835–838. https://doi.org/10.17660/actahortic.2009.842.184
  • 48. Srivastav, A., Ganjewala, D., Singhal, R.K., Rajput, V.D., Minkina, T., Voloshina, M., Srivastava, S., Shrivastava, M., 2021. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10, 2556. https://doi.org/10.3390/plants10122556
  • 49. Taffouo, V.D., Kouamou, J.K., Ngalangue, L.M.T., Ndjeudji, B.A.N., Akoa, A., 2009. Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L. Walp.) Cultivars. Int. J. Bot. 5, 135–143. https://doi.org/10.3923/IJB.2009.135.143
  • 50. Tawaha, A.M. and Turk, M.A. 2004. Field pea seeding management for semi‐arid Mediterranean conditions. Journal of Agronomy and Crop Science, 190(2), 86-92.
  • 51. Van Zelm, E., Zhang, Y., Testerink, C., 2020. Salt Tolerance Mechanisms of Plants. https://doi.org/10.1146/annurev-arplant-050718-100005 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • 52. Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R.C., Tiwari, M., Sharma, N., Sahi, S.V., 2017. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. PPB 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50a6c66c-7287-4c31-8053-0c8b9b3ba466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.