PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microwave metamaterial absorber for sensing applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A metamaterial absorber (MA) based sensor is designed and analysed for various important applications including pressure, temperature, density, and humidity sensing. Material parameters, as well as equivalent circuit model have been extracted and explained. After obtaining a perfect absorption (PA)at around 6.46 GHz and 7.68 GHz, surface current distributions at resonance points have been explained. Since bandwidth and applicability to different sensor applications are important for metamaterial sensor applications, we have realized distinctive sensor demonstrations for pressure, temperature, moisture content and density and the obtained results have been compared with the current literature. The proposed structure uses the changes on the overall system resonance frequency which is caused by the sensor layer’s dielectric constant that varies depending on the electromagnetic behaviour of the sample placed in. This model can be adapted to be used in sensor applications including industrial, medical and agricultural products.
Słowa kluczowe
Rocznik
Strony
318--325
Opis fizyczny
Bibliogr. 38 poz., il., rys., wykr.
Twórcy
autor
  • Department of Computer Engineering, Faculty of Engineering and Architecture, Bozok University, Yozgat, 66200, Turkey
autor
  • Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay 31200, Turkey
autor
  • Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay 31200, Turkey
autor
  • Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay 31200, Turkey
autor
  • Department of Electrical and Electronics Engineering, Middle East Technical University - Northern Cyprus Campus (METU-NCC), Kalkanli, Guzelyurt, 99738, TRNC/Mersin 10, Turkey
  • Kalkanli Technology Valley, Middle East Technical University - Northern Cyprus Campus (METU-NCC), Kalkanlı, Guzelyurt, 99738, TRNC/Mersin 10, Turkey
Bibliografia
  • [1] M. Zhong, Influence of dielectric layer on negative refractive index and transmission of metal – Dielectric-Metal Sandwiched Metamaterials, Chin. Opt. Lett. 12 (2014), 041601-1-041601-3.
  • [2] D.O. Boillat, T. Friedli, J.W. Kolar, Electronically controllable impedance for tuning of active metamaterials, IEEE J. Emerg. Sel. Top. Power Electron. 5 (3) (2017) 1404–1414.
  • [3] H.Y. Dong, et al., Realization of broadband acoustic metamaterial lens with quasi-conformal mapping, Appl. Phys. Express 10 (8) (2017) 087202.
  • [4] M. Bakir, Electromagnetic-based microfluidic sensor applications, J. Electrochem. Soc. 164 (9) (2017) B488–B494.
  • [5] F. Dincer, M. Karaaslan, O. Akgol, E. Unal, C. Sabah, Design of polarization-and incident angle-independent perfect metamaterial absorber with interference theory, J. Electron. Mater. 43 (2014) 3949.
  • [6] Y. Gang, L. Furi, Y. Jin, L. Chunya, J. Jie, Y. Jianquan, Dual-band tunable perfect metamaterial absorber in the THz range, Opt. Express 24 (2016) 1518–1527.
  • [7] T. Chen, S. Li, H. Sun, Metamaterials application in sensing, Sensors 12 (2012) 2742.
  • [8] Y. Lee, S. Kim, H. Park, B. Lee, Metamaterials and metasurfaces for sensor applications, Sensors 17 (8) (2017) 1726.
  • [9] A. Cherifi, B. Bauhafs, Potential of SPR sensors based on multilayer interfaces with wold and LHM for biosensing applications, Photonic Sensors 7 (33) (2017) 199–205.
  • [10] A. Upadhyay, Y.K. Prajapati, V. Singh, J.P. Saini, Sensitivity estimation of metamaterial loaded planar waveguide sensor, Opt. Quantum Electro. 47 (7) (2015) 2277–2287.
  • [11] K.V. Sreekanth, Y. Alapan, M. ElKabbash, U.A. Gurkan, D. Luca, G. Strangi, A plasmonic platform based on hyperbolic metamaterials for extreme sensitivity biosensing, Nature Mater. 15 (2016) 621–627.
  • [12] K. Kim, D. Lee, S. Eom, S. Lim, Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS), Sensors 16 (2016) 521.
  • [13] M.H. Zarifi, T. Thundat, M. Daneshmand, High resolution microwave microstrip resonator for sensing applications, Sens. Actuators A: Phys. 233 (2015) 224–230.
  • [14] A.K. Horestani, Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators, Sens. Actuators A: Phys. 210 (2014) 8–24.
  • [15] N. Nurfatmah, N. Pauzi, A. Syafiq, A. Hazmi, H. Abdul Aziz, A.B. Zailan, Z. Indris, Frequency response and activation energy of palm-fatty acids at microwave region, Int. J. Hydrogen Energy 42 (32) (2017) 20444–20452.
  • [16] A.P. Franco, L.Y. Yamamoto, C.C. Tadini, J.A. Gut, Dielectric properties of green coconut water relevant to microwave processing: effect of temperature and field frequency, J. Food Eng. 155 (2015) 69–78.
  • [17] N. Ramly, N. Aini, N. Sahli, S. Aminuddin, M. Yahya, A. Ali, Dielectric behaviour of UV-crosslinked sulfonated poly (ether ether ketone) with methyl cellulose (SPEEK-MC) as proton exchange membrane, Int. J. Hydrogen Energy 42 (2016) 9284–9292.
  • [18] J. Corach, P. Sorichetti, S. Romano, Electrical properties of vegetable oils between 20 Hz and 2 MHz, Int. J. Hydrogen Energy 39 (2014) 8754–8758S.
  • [19] M.A. Rao, S.S. Rizvi, A.K. Datta, J. Ahmed, Engineering properties of foods, CRC press, 2014.
  • [20] Y. Han, J. Wang, Y. Li, Y. Hang, X. Yin, Q. Li, Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes, Food Chem. 188 (2015) 201–209.
  • [21] H. Hu, X. Zhu, T. Hu, I.W. Cheung, S. Pan, E.C. Li-Chan, Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods, J. Funct. Foods 19 (2015) 182–193.
  • [22] R. Morales, K.D. Martínez, V.M.P. Ruiz-Henestrosa, A.M. Pilosof, Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect, Ultrason. Sonochem. 26 (2015) 48–55.
  • [23] H. Pu, M. Kamruzzaman, D.W. Sun, Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods-A review, Trends Food Sci. Technol. 45 (1) (2015) 86–104.
  • [24] A. Nakonieczna, B. Paszkowski, A. Wilczek, A. Szypłowska, W. Skierucha, Electrical impedance measurements for detecting artificial chemical additives in liquid food products, Food Control 66 (2016) 116–129.
  • [25] S. Trabelsi, M.A. Lewis, S.O. Nelson, Microwave moisture meter for in-shell peanut kernels, Food Control 66 (2016) 283–290.
  • [26] G.G.B. Nielsen, A. Kjær, B. Klösgen, P.L. Hansen, A.C. Simonsen, B. Jørgensen, Dielectric spectroscopy for evaluating dry matter content of potato tubers, J. Food Eng. 189 (2016) 9–16.
  • [27] M. Asad, S.A. Neyadi, O.A. Aidaros, M. Khalil, M. Hussein, Single port bio-sensor design using metamaterial split ring resonator, 2016 5th Int. Conf. on Electronic Devices, Systems and Applications (ICEDSA) (2016) 1–4, http://dx.doi.org/10.1109/ICEDSA.2016.7818515.
  • [28] C. Sabah, F. Dincer, M. Karaaslan, M. Bakir, E. Unal, O. Akgol, Biosensor applications of chiral metamaterials for marrowbone temperature sensing, J. Electromag. Waves Appl. 29 (17) (2015) 2393–2403.
  • [29] B. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun, A.D. Yalcinkaya, Cost-effective microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose, IEEE J. Sel. Top. Quantum Electron. 23 (2) (2017) 404–409.
  • [30] C. Sabah, O.T. Kucuksari, G.T. Sayan, Metamaterial absorber-based sensor embedded into X-band waveguide, Electron. Lett. 50 (2014) 15.
  • [31] A. Sellier, V. Tatiana, A. Lustrac, Resonant circuit model for efficient metamaterial absorber, Opt. Express 21 (106) (2013) A997–A1006.
  • [32] S. Bhattacharyya, G. Saptarshi, K.V. Srivastava, Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber, AIP Adv. 4 (9) (2014) 097127.
  • [33] D. Factorova, Temperature dependence of biological tissues complex permitivity at microwave frequencies, Adv. Electric Electron. Eng. 7 (2008) 354.
  • [34] N. Bansal, A.S. Dhaliwal, K.S. Mann, Dielectric characterization of rapeseed (Brassica Napus L.) From 10 to 3000MHz, Biosyst. Eng. 143 (2016) 1–8.
  • [35] M. Bakir, M. Karaaslan, F. Dincer, K. Delihacıo˘glu, C. Sabah, Tunable perfect metamaterıal absorber and sensor applıcatıons, J. Mater. Sci: Mater. Electron. 27 (2016) 12091–12099.
  • [36] M.A.B. Adam, Understanding microwave pyrolysis of biomass materials, PhD thesis, University of Nottingham, 2017.
  • [37] M.K. Bakir, M. Karaaslan, F. Dincer, C. Sabah, U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations, IET Microwave Antennas Propag. 10 (2016) 293–300.
  • [38] S. Zhang, X. Kou, B. Ling, S. Wang, Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization, Sci. Rep. 7 (2017) 42452.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-509f2a7d-33bf-4333-8ac5-fd5ec2e0e0e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.