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Abstract. We consider an optimal control problem for a general mathematical model of
drug treatment with a single agent. The control represents the concentration of the agent
and its effect (pharmacodynamics) is modelled by a Hill function (i.e., Michaelis-Menten type
kinetics). The aim is to minimize a cost functional consisting of a weighted average related to
the state of the system (both at the end and during a fixed therapy horizon) and to the total
amount of drugs given. The latter is an indirect measure for the side effects of treatment. It
is shown that optimal controls are continuous functions of time that change between full or
no dose segments with connecting pieces that take values in the interior of the control set.
Sufficient conditions for the strong local optimality of an extremal controlled trajectory in
terms of the existence of a solution to a piecewise defined Riccati differential equation are
given.
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1. INTRODUCTION

We consider optimal control problems for drug treatment. The controls w in the
formulation represent the dosages of various therapeutic agents while pharmacokinetic
models (PK) describe the relations between the dosages of the agents and their
concentrations ¢ in the blood stream (“what the body does to the drug”) and pharma-
codynamic models (PD) describe the effects that the drugs have on the disease (“what
the drug does to the body”). Generally, PK is modelled by low-dimensional linear
differential equations with real eigenvalues [7]. Pharmacodynamic models, on the other
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hand, are simply given by functional relations of the form ¢(c¢) that model the effect
the concentration ¢ has. Here both linear models (based on the log-kill hypothesis
[17]) as well as Michaelis-Menten or sigmoidal functional relations are commonly used
[10,13]. While there exists a large literature on optimal control of mathematical models
for chemotherapy going back to the early papers by Swierniak [19] and Swan [18],
even including papers with state-space constraints (e.g., [5]), in most of these papers
pharmacodynamic relations are not included. Yet, these type of functional relations are
highly nonlinear and thus the dependence of optimal controls on the specific relations
used in the modeling becomes a mathematically nontrivial problem [8,9,15] which at
the same time is of great practical interest. These changes that pharmacometrics (i.e.,
both PK and PD) induce on the structure of optimal solutions are the scope of our
research.

In this paper, we present results about the structure of optimal controls for a single
chemotherapeutic agent when pharmacodynamics is modelled by a Michaelis-Menten
type equation. This relation is based on enzyme kinetics and takes the form

Cc

Emaxia
Cso+c

(1.1)

where F\,.x denotes the maximum effect the drug can have and C is the concentration
for which half of this maximum effect is realized. These are standard parameters used
in pharmacology to describe the effectiveness of drugs. This model, also called the
FEax-model in pharmacology, is appropriate for fast acting drugs that do not have
a prolonged initial phase when the concentration builds up slowly. During such a phase
the drug is still rather ineffective and a sigmoidal model would be more appropriate.
Contrary to linear models of the form ¢, a Michaelis-Menten form captures the typical
saturation effects when the concentration becomes too large. As such it is the most
commonly used model for PD in the industry. For simplicity, here we also do not include
a pharmacokinetic model and thus identify the drug’s dosage with its concentration in
the blood stream. Once more, this is a reasonable modeling assumption for fast acting
drugs.

For a fixed therapy horizon, we consider the optimal control problem to minimize
a weighted average of quantities related to the state of the disease or infection and the
total amount of drugs administered. The latter is given by the integral fOT u(s)ds, the
so-called AUC (“area under the curve”) widely used in the pharmaceutical industry
to describe the efficacy of treatment. It also represents an indirect assessment of the
side effects of therapy and thus including it in the objective tends to limit these
negative effects. We show in this paper that a Michaelis-Menten type expression for the
pharmacodynamics induces enough convexity properties on the Hamiltonian function
of the optimal control problem as a function of the control u to generate optimal
controls which are continuous in time. This is consistent with an interpretation of
the controls as concentrations (since no PK model is included) and it significantly
simplifies numerical computations. Sufficient conditions for the strong local optimality
of an extremal controlled trajectory in terms of the existence of a solution to a piecewise
defined Riccati differential equation are given based on the method of characteristics.
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2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM
We consider a general system of differential equations of the form

(@) 21)

where f : D — R"™ and g : D — R"™ are continuously differentiable vector fields
defined on some domain D C R™. The dynamics represents an abstract formulation
for chemotherapy with a single agent. The vector field f, called the drift, describes
the evolution of the system when no drugs are given (u = 0), while the vector field g,
the control vector field, in combination with the control term describes the effects of
drug treatment. The variable u, the control in the system, represents the concentration
of the chemotherapeutic agent given. In this formulation we do not yet include
a pharmacokinetic equation and thus identify the dosage with the concentration. The
functional form used for the control u represents a Michaelis-Menten or E,a.x-model
with Csg normalized to 1 and the constant F,,,, subsumed in g.

Controls are Lebesgue measurable functions u : [0,7] — [0, umax] defined over
an a priori fixed therapy horizon [0, 7] that take values in a compact interval [0, tmax]-
It follows from standard results on solutions of differential equations that for any
xo € D the initial value problem for the dynamics (2.1) with initial condition 2(0) = zg
has a unique local solution x(-; o) which we call the corresponding trajectory. However,
for general vector fields f and g there is no guarantee that this solutions will exist on
all of [0,T]. Admissible controls thus are only those controls for which this solution
exists over the full therapy horizon. For an admissible control we then define the
objective functional J in the form

= f(z)+

T

J =J(u) = az(T) Jr/ﬂx(s) + yu(s)ds, (2.2)
0

where o and 3 are n-dimensional row vectors, a, 3 € (R™®)", and 7 is a positive real
number. The term ax(T) represents a weighted average of the variables x at the
terminal time T (such as the total number of cancer cells at the end of therapy) while
the integral term on the state z is included to prevent that this quantity would increase
to unacceptably high levels in between. The integral of the control is the AUC-term of
pharmacology and it is a measure for the side effects of treatment. Minimizing this
quantity J generates a compromise between two competing aims of treatment. On
one hand, the aim is to reduce the state z which represents the severity of the disease
or infection (e.g., tumor volume) and this requires to give as much drugs as possible.
On the other hand, side effects need to be limited and so the aim also is to give as
little drugs as possible. Clearly, the balance will be determined by the weights «,
and v in the objective and generally these coefficients are variables of choice which
often need to be selected carefully to obtain a meaningful behavior.
We thus consider the following optimal control problem:

[MM] Minimize the functional J over all admissible controls u : [0, T] = [0, maz)
subject to the dynamics (2.1).
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3. NECESSARY CONDITIONS FOR OPTIMALITY

The fundamental necessary conditions for optimality for problem [MM] are given by
the Pontryagin maximum principle [12] (for some more recent references on optimal
control, see [1,2,14]). Since the optimal control problem [MM] does not involve terminal
constraints on the state, extremals are normal and without loss of generality we already
define the Hamiltonian function H for the control problem as

H:R")" xR" xR =R,

()\,a?,U)%H(A,x,u):ﬁx+ryu+<)\,f( )+ﬁg( )> (3.1)

with (A, v) = Av denoting the inner product of a row vector A with a column vector v.
It follows from the Pontryagin maximum principle [12] that, if u, is an optimal
control and x, denotes the corresponding trajectory, then there exists a covector
A:[0,T] — (R™)* which is a solution to the adjoint equation,

A=—-B-2A (Df(x) + ILLDg(@) (3.2)

with terminal condition A(T") = a such that the Hamiltonian H is minimized almost
everywhere on [0, 7] by wu, along (A(t), z.(t)), i.e.,
HO®) . (0),u,(0) = _min  HO(D), .(0),0) (3.3)
Controlled trajectories (z,u) for which there exists a multiplier A such that these
conditions are satisfied are called extremals and the triples (z,u, ) including the
multipliers are called extremal lifts (to the cotangent bundle).
An important property for solutions to the optimal control problem [MM] is that

optimal controls are continuous. More specifically, we have the following representation
of optimal controls.

Theorem 3.1. Let u, be an optimal control with corresponding trajectory x,. and let
A be an adjoint vector such that the conditions of the maximum principle are satisfied.
Then we have that

Umazx if <)‘(t) (33 (t))> < _7(uma$ + 1) ’
’U,*(t) = 7M—yx*(t))> - 1 Zf ’Y(umaz + 1)2 < ( ),g(l’*( ))> -, (34)
0 if —v < (A1), gz« (1)))-

Proof. We need to minimize the Hamiltonian H as a function of the control u over
the control set [0, tqz]. Since

OH _  (Ag(@)
%_7+(1+u)2’
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it follows that H(A(t), z.(t),u) is strictly increasing in w if the function

B(t) = (At), 9(x+(1))) (3-5)

is non-negative. In this case the minimum over the control set [0, %4, therefore is
attained for u, = 0. If ®(¢) is negative, then it follows from

PH _ 2\ g()

ou? (1+wu)?

that the Hamiltonian H (A(t), z.(t),u) is a strictly convex function of v on R. Hence
it has a unique stationary point and this point is the global minimum of the function.
Solving %—ZI = 0, the stationary point is given by

ust(t) =4/ ——= — 1. (3.6)

Depending on the location of ug(t) we have the following three cases: if us:(t) < 0,
then the function H(A(¢),z.(t),-) is strictly increasing on [0, tmqz] With minimum
at uy = 0; if 0 < ug(f) < Umax, then the global minimum lies in the control set and
thus u, is given by the stationary point, and if us () > Umax, then H(A(E), 2.(t), ")
is strictly decreasing over [0, Umqz] with minimum at w. = Umax. This proves the
result. O

Corollary 3.2. Optimal controls are continuous.

Proof. Using the notation from the proof above, as long as ®(¢) is negative, the point
ust (t) where the Hamiltonian H(A(t), z.(t), ) attains its minimum varies continuously
with ¢. For this case we can represent the control in the form

ux(t) = max{0, min{us:(t), Umax | (3.7)

and thus u, is continuous as long as ®(t) is negative. For ®(¢) > 0 the optimal control
is given by u, = 0 which is also the optimal control for ®(¢) > —~. Hence, optimal
controls remain continuous as ® becomes nonnegative. O

>
>

Thus optimal controls continuously change between the limiting values uy,x and 0
and values that lie in the interior of the control set as the function ® crosses the levels
—v and —(1 + Umax)?. We therefore call the function ® the indicator function for
the optimal control. Clearly, it is this function that determines the optimal controls.
For example, we have the following result:

Proposition 3.3. If the indicator function ® is strictly increasing on [0,T], then
optimal controls are concatenations of boundary and interior controls of at most the
sequence Umax — Ust(t) — 0, i.e., possibly starting with a full dose segment, u.(t) =
Umax, controls switch to the interior control u,(t) = ug(t) and end with a segment
where no drugs are given, u.(t) = 0. For some initial conditions this sequence may
be shorter and not all pieces need to be present. If present, the interior control ug(t)



408 Maciej Leszczyriski, Elzbieta Ratajczyk, Urszula Ledzewicz, and Heinz Schéttler

is strictly decreasing. Analogously, if ® is strictly decreasing on [0,T], then optimal
controls are at most concatenations that follow the sequence 0 — ugt(t) = Umax and
in this case the interior control is strictly increasing (see Figure 1).

Umax Umax

Uinterior
Uinterior

Upin = 0 Unin = 0

Fig. 1. Ilustration of the structure of optimal controls if the indicator function & is strictly
monotone (on the left for an increasing indicator function, on the right for a decreasing one).
In this case the interior control is also strictly monotone, but in the opposite direction

Overall, monotonicity and convexity properties of the indicator function determine
the concatenation structure of the optimal controls. It is therefore of importance to be
able to compute the derivatives of the indicator function effectively. The result below
follows from a direct calculation.

Proposition 3.4. Let (x,u,\) be an extremal lift for the optimal control prob-
lem [MM]. Given a continuously differentiable vector field h, define the function
U(t) = (A(t), h(x(t))). Then the derivative of U is given by

(t) = — (B, h(z(t)) + (A1), [f, h] (z(1))) + 1_1:(3(0

(A(D), g, h] (z(2))),  (3.8)
where [k, h](x) = Dh(x)k(x) — Dk(z)h(z) denotes the Lie bracket of the vector fields
k and h.

4. EXAMPLE: A MATHEMATICAL MODEL
FOR ANTI-ANGIOGENIC TREATMENT

We consider a dynamical system for tumor development under angiogenic signaling
based on the equations by Hahnfeldt, Panigrahy, Folkman and Hlatky [6]. In this model,
the spatial aspects of the underlying consumption-diffusion process that stimulate and
inhibit angiogenesis are incorporated into a nonspatial 2-compartment model with
the primary tumor volume, p, and the carrying capacity of the vasculature, ¢, as its
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principal variables. The dynamics consists of two ODEs that describe the evolution
of the tumor volume and its carrying capacity and we refer the reader to [6] or [15]
for a detailed development of the mathematical model. The optimal control problem
[MM] for this model takes the following form:

[H] For a fixed terminal time 7', minimize the functional

T
J=Ju)=p(T)+ /Qp(s) + yu(s)ds
0
subject to the dynamics

p=—pln (g’) , p(0) = po. (4.1)

Gug
1+’

. 2
¢="bp—dp3q—pq— q(0) = qo- (4.2)
over all Lebesgue measurable (respectively, piecewise continuous) functions
w: [0, T] = [0, Umax]-

Administering anti-angiogenic drugs directly leads to a reduction of the carrying
capacity ¢ of the vasculature, but only indirectly effects the tumor volume p. For this
reason here we have taken the weights in the objective as « = (1,0) and 5 = (6,0)
normalizing the weight for the tumor volume at the end of the therapy interval and
putting the emphasis on tumor reductions. The drift and control vector fields in the
general description [MM] are, with z = (p, q), given by

—¢pln (%) 0

bp — (M+dp§) q —Gq

and the Hamiltonian function H for the control problem is

Gu
H(\ z,u) =0p+~yu— M\épln (5) + X (bp - (,u + dp%) q— 1+uq> . (4.3)
If u, is an optimal control defined over an interval [0, T] with corresponding trajec-
tory (p«, gs), then there exists an absolutely continuous co-vector, A : [0,T] — (R?)*,
such that A\; and A, satisfy the adjoint equations

. OH P 2%
. OH P 2 Gu
AQ_—a—q_—Alggmg (;H—dp +1+u), (4.5)

with terminal conditions
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By Theorem 3.1, optimal controls satisfy

Umazx if Gq(t)>\2 (t) > ’V(Uma:c + 1)27
we(t) = 4 GU220 g oy (0, + 1) > Ga(t)Aa(t) > 7, (4.6)
0 if v > Gq(t)A2(t)

and it follows from the transversality condition that ®(T") = —GA2(T")q(T) = 0. Thus
optimal controls end with an interval [, T] where u.(t) = 0. The precise sequence of
segments when the control lies on the boundary or in the interior still needs to be
determined. It is expected that for biomedically realistic initial conditions optimal
controls start with a full dose segment and then the dose is lowered to 0 at the end
along one segment for which optimal controls take values in the interior of the control
set.

5. SUFFICIENT CONDITIONS FOR STRONG LOCAL OPTIMALITY

We develop numerically verifiable sufficient conditions for the strong local optimality
of an extremal controlled trajectory whose control consists of a finite number of
concatenations of interior and boundary pieces.

Definition 5.1 (regular junction). Let (x.,u.) be an extremal controlled trajectory
for problem [MM] and denote the corresponding adjoint variable by A. We call a time
7 € (0,T) a junction time if the control changes between a boundary value (given by
0 Or Upmae) and the interior control ug; the point x.(7) is a junction. A junction is
said to be regular if the derivative of the indicator function ®, ®(t) = (A(t), g(z«(1))),
at the junction time 7 does not vanish, i.e., ®(7) # 0.

We call an extremal triple I' = (z., us, A) for problem [MM] an extremal lift with
regular junctions if it only has a finite number of junctions and if each junction is
regular. Under these conditions, it is rather straightforward to embed the reference
extremal into a parameterized family of broken extremals (z(-,p), u(:,p), A(+,p)) with
regular junctions. We only note that a parameterized family of broken extremals
essentially is, as the name indicates, a collection of extremal controlled trajectories
along with their multipliers which piecewise satisfies some smoothness properties in
the parameterization. We refer the reader to [14, Chapters 5 and 6] for the mathemat-
ically precise, but somewhat lengthy definitions. In our case, such a parameterized
family of extremals is simply obtained by integrating the dynamics and the adjoint
equation backward from the terminal time 7" with terminal conditions z(T,p) = p
and A(T,p) = « while choosing the control u(¢, p) to satisfy the minimality condition
(3.4). The terminal value of the state takes over the role of the parameter p and for p
in a sufficiently small neighborhood P of p. = z.(T) the properties of the reference
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extremal simply carry over onto the extremal for the parameter p. Specifically, states,
controls and multipliers are defined by

. _ u(t,p)
i(t,p) = f(z(t,p)) + Tralt.p) ~g(x(t, p)), (5.1)
At.p) = =5 = Altp) (DIGalt.p) + ot Dafa(t)). 6:2)
Umax lf <)\(t7p),g(1'(t,p)> S _'Y(Umax + 1)27
u(tap) = _w -1 lf - V(Umaw + 1)2 S <)\(t,p),g(x(t,p))> S -
0 if —v < (At p), g(x(t,p))
(5.3)
with terminal values
z(T,p)=p and XT,p) =«a. (5.4)

Proposition 5.2. Let Ty = (z(-, ps), u(-, 0« ), A(, p«)) be an extremal lift with regular
Jgunctions at times t;, i =1,... )k, 0=1y <ty < - <ty <tpy1 =T, and suppose that
the terminal time tg11 =T is not a junction time for the reference extremal. Then there
exists a neighborhood P of p. and continuously differentiable functions ; defined on P,
i=1,...,k, that satisfy 7:(p«) = t; such that the family T', = (z(-,p), u(-,p), A(-,p))
for p € P is a parameterized family of broken extremals with reqular junctions at times
Ti, t =1,...,k. All controls follow the same switching sequence (between interior and
boundary controls) as the reference control u(-,py).

Proof. For p in some open neighborhood P of p. and t < T, let x(¢,p) and A(¢,p)
denote the solutions to equations (5.1) and (5.2) with terminal conditions (5.4) when
the control u = u(t, p) is given by the same type of control as the reference control
u(t, p«) on the last interval [t;, T]. That is, we choose u(t, p) constant and with the same
value as u,(t) if the ugs(t) is constant or we define

u(top) = \/_ Ol oot

if u(t) is given by the interior value. For values p close enough to p. = x.(T), by
the continuous dependence of solutions of an ODE on initial data and parameters,
these solutions exist on an interval [t — ¢, T] for some & > 0. Furthermore, since the
terminal time T is not a junction for the reference extremal, it also follows that
the triples (x (-, p), u(-,p), A(+, p)) are extremal lifts on a sufficiently small interval prior
to T. At the last junction the control changes between a boundary value and the
interior value and thus either ®(tg,p.) = —v or ®(tg,p.) = —v(1 + u2,,,). Since
®(t,p+) # 0, by the implicit function theorem the equation ®(t, p) = —v, respectively
®(t,p) = —v(1 + u2,,), whichever applies, can be solved for ¢ by a continuously
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differentiable function 7, = 7 (p) near p, which satisfies 74 (p«) = tx. By construction
the controlled trajectories (z(-,p), u(:,p) are extremals on the intervals [ (p), T] and
for p close enough to p, we still have ®(74(p),p) # 0. Hence for p close enough to
D« these functions define a parameterized family of extremals on [74(p),T] which
has a regular junction at the switching surface defined by ¢ = 74(p). Then iterate
this construction over the next interval [tx_1,t;] by taking the values z(7(p), p) and
A7 (p), p) as terminal conditions on the junction surface. For P sufficiently small once
more all required inequality relations will be satisfied. Since we only consider a finite
number of junctions, there exists a small enough neighborhood P that works for all

junctions. This proves the result. O

The triples 'y = (z(-,p),u(-,p), A(-,p)), p € P, define a parameterized family
of broken extremals; that is, they satisfy all the necessary conditions for optimality of
the maximum principle and are differentiable functions of the parameter between the
junction times [14]. The associated flow map of the controlled trajectories is defined as

P (tp) = F(tp) = (& (t p)), (5:5)

i.e., through the graphs of the corresponding trajectories. This is the correct formulation
as our problem formulation overall is indeed time-dependent since there exists a fixed
finite terminal time (e.g., see [14, pg. 324]). We emphasize that it is not required for
a parameterized family of extremals that this flow defines an injective mapping. If
it does, we call it a field of extremals. Obviously, since the trajectories for different
parameter values typically obey different differential equations, it is quite possible
that these graphs could intersect. In fact, conjugate points and associated loss of
local optimality of extremals precisely correspond to fold singularities in this mapping
while the reference controlled extremal will be a strong local minimum if this flow
map is a diffeomorphism along the reference trajectory t — z.(t) = z(t,p.) [14].
In principle, loss of injectivity of the flow can occur both in between the junction
surfaces (and this corresponds to the classical conjugate points like in the calculus
of variations) and at the junction surfaces (e.g., see [4,11,14]). In our case, however,
since the controls remain continuous at junctions, the latter is not possible (also
see [16]). Because of the continuity of the controls, trajectories before and after the
junction point to the same side of the junction surface and thus the combined flow
is injective near the junction surface (see Figure 2). In the terminology of [14], all
junction surfaces are transversal crossings. Hence, the strong local optimality of an
extremal lift with regular junctions reduces to determining whether or not the flow
map F is a diffeomorphism along the reference controlled trajectory on the segments
between the junction times. If this is the case, then a continuously differentiable solution
to the Hamilton-Jacobi-Bellman equation can be constructed on the region covered
by the flow F of extremals in the family by taking the cost along the extremals. The
desired strong local optimality of the reference trajectory then follows from classical
results.

It thus remains to check inductively whether the flow maps between the junction
surfaces are diffeomorphisms. If the control is constant between two junction surfaces
(given by either u(t,p) = 0 or u(t,p) = tUmax), this is immediate. For, in this case all
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trajectories are solutions of the same differential equation and then this is merely the
statement about uniqueness and smooth dependence on parameters for the solutions. It
is the case when the controls lie in the interior of the control set that is the non-trivial
one. However, in this case we are in the classical situation of neighboring feedback
control laws (e.g., see [3, Chap. 6], [14, Sect. 5.3] or [16]). We briefly describe this
theory and adjust its formulas to our problem formulation.

P
Y * x(t,p)
= el B
- .~
[ J S RSREEEEER A ) p ==x(T,p)
w N o o
/ \ x(0,p.)

— t : +— t
T T

Fig. 2. A parameterized field of extremals with regular junctions

The mapping F : (t,p) = F (t,p) = (t,z(t,p)) is a local diffeomorphism along the
reference trajectory ¢t — x(t, p.) on the interval [¢;,t;11] if and only if the Jacobian
matrix DF is nonsingular on the interval [t;,t;11]. If we denote by %i(t’ px) the n. xn
matrix with (¢, ) entry given by g—;?, i.e., the ith row is the gradient of x;(¢,p) with

J
respect to the parameter p, then this is equivalent to g—i(t, p«) being non-singular
on [t;, t;+1]. Note that this is automatic at the terminal time T" because of the chosen
parameterization, (7T, p) = p, which gives g—g(T, p«) = Id. Furthermore, g—z(t,p*) is
non-singular over the interval [¢;,¢;+1] if and only if the matrix

T 7 -1
5.0 = 2 .p) (gpm) (5.6)

is well defined over this interval. Similarly as above, the ith row of % is the the
gradient of \;(¢,p) and the transpose is taken since X is a row vector. The partial
derivatives g—;(t,p) and %(t,p) are solutions of the variational equations of (5.1)

and (5.2). Formally, these equations are obtained by differentiating equations (5.1) and
(5.2) with respect to ¢t and interchanging the partial derivatives with respect to p.
Using the relations

i(0.0) = (Gyp (7€) alt ) utep) )

and

T
M (t,p) = (?;(AT(t,p),x(t,p),U(tp))
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it follows that (e.g., see [14, Sect. 5.3] and [16])

d [ 0Ox ox ou
— | =— | =Hyr,— + Hyr\,— 5.7
dt(&‘p) )\xp+ )\uap7 ( )
and
d [ON\T ONT Ox ou
—|— |=—-H,yr— —Hyp,— — Hypy—. .
dt ( op ) =2 op Op op (58)

Here x, u, A and their partial derivatives are evaluated at (¢,p) and the second-order
partial derivatives of H are evaluated along the full extremals, (A(¢,p), z(t, p), u(t, p)).
For notational clarity, however, we have dropped these arguments. Also, when differen-
tiating the Hamiltonian H twice with respect to column vectors (x or AT ), we write
the corresponding matrices of second partial derivatives with the components of the
first vector as row indices and the components of the second vector as column indices.
Thus, the (4,5) entry of % is given by %. We denote this matrix by Hyr.
Note that Hyr, = (HI)\T)T. Finally, we also have that Hyryr = 0 since H is linear
in A

If the control u is constant on the domain D; = {(¢,p) : 7:(p) < Ti41(p),p € P},
then %Z(t,p) = 0 and we have that

d [ oz z

dt (8%;) Hyr, 0 %p
- . (5.9)

d (A" ~H,, —H "

&t (Tp> aAt op

If the control u takes values in the interior of the control set on D;, then, by the
maximum principle, we have that

o0H

S (Wt p).(t,p), ult, p) = 0.

Differentiating in p, it follows that

ONT ox ou
Hyyr— 4+ Hy,— + Hyu— =0. 1
UM 8}) + Hyy ap + yu ap 0 (5 0)
In our case,
0*H 2 29

and this expression is positive if the control takes values in the interior of the control
set (Theorem 3.1). Hence

T
Ou _ g (Hwax + HW‘(M> .
dp

= = 12
o = Hal (Huy (512)
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Substituting this expression into the variational equations gives the following homoge-
neous matrix linear differential equation:

d [ Oz T
dt (6p> Hyry — Hyr Hy Hyy —Hyr Ho ) Hyr %p
d (ag‘T) —Hp + H’I‘uHuu H,, - (Hr)\T - HrqujulHu)\T) %
P
(5.13)
Note that

Hyyr — Hyu Hp Hyse = (Hyry — Hyr Hyl Huy)'

Let X(t) = g—;(t,p*) and Y (t) = %(t,p*) be the solutions of the variational
equations along the reference extremal I',. The variational equations are linear matrix
differential equations with time-varying coefficients given by continuous functions and
thus these solutions exist on the full interval [t;, t;41]. It is a classical result in control
theory, going back to Legendre and the calculus of variations, that if a pair of n x n
matrices (X,Y") is a solution to a linear matrix differential equation of the form

B4 56

where A, R and M are matrices whose entries are continuous functions over [t;, t;11]
and X(t;41) is nonsingular, then the matrix X (¢) is nonsingular over the interval
[t;, t;11] if and only if there exists a solution to the matrix Riccati differential equation

S+ SA(t)+ AT()S + SRS+ M@t) =0,  S(tip1) =Y (tiz1) X (tip1) ™" (5.15)

over the full interval [¢;, ;1] while the matrix X (7) is singular if this Riccati differential
equation has a finite escape time 7 > t;. (For example, a proof is given in [14,
Proposition 2.4.1]). For an interior control we thus have the following result:

Proposition 5.3. Suppose the control u = u(t,p) takes values in the interior of the
control set over the domain D; = {(t,p) : 7:(p) < Ti+1(p),p € P}. If the matriz matriz
X(tis1) = %g(ti_i'_l,p*) is nonsingular, then X(t) = g—i(t,p*) is nonsingular on the
full interval [t;,t;11] if and only if there exists a solution S, to the following matriz
Riccati differential equation (all partial derivatives are evaluated along the reference
extremal T)

S+ S (Hyr, — Hyr, H, HW) + (Hyry — Hyr Hy Hyy)' S (5.16)
— SHyr Hyl Hyyr S + (Hyw — HpuHyy Hug) =0
with terminal condition Sy (ti11) = Y (tir1)X (tiv1)~! over the full interval [t;, t;y1].
In this case, we have that S.(t) =Y ()X (t)~! for all t € [t;, tit1].

In the case of a constant control, u(t,p) = const, we have the same situation, but
with R(t) = 0. In this case the Riccati differential equation (5.16) reduces to the linear
Lyapunov equation S+SA(t)+ AT (t)S+ M (t) = 0 which always has a solution over the
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full interval. This once more confirms that the flow is a diffeomorphism along intervals
where the reference control is constant, but, more importantly, gives us the formula
for how to propagate the matrix S along those intervals. We summarize the statement
in the proposition below:

Proposition 5.4. Suppose the control u = u(t,p) takes the constant value u(t,p) =0
or u(t,p) = Umax over the domain D; = {(t,p) : 7;(p) < Tit1(p),p € P}. If the matriz
X(tis1) = %g(ti+1,p*) is nonsingular, then X(t) = g—z(t,p*) is nonsingular over
the full interval [t;,ti+1] and the matriz S.(t) =Y ()X (t)~! can be computed as the
solution to the linear Lyapunov equation

S+ SHyr, + Hy\rS+ Hyp =0 (5.17)
with terminal condition Sy (tiy1) = Y (tiv1)X (tir1) L.

Note that the Riccati differential equation (5.16) can be rewritten in the form

S+ SHyry + Hr S+ Hyy — (SHyry + Hypw) H (HypytS + Hyz) = 0

uu

which brings out its relation with the Lyapunov equation (5.17) more clearly. These
equations only differ in the addition of a rank 1 matrix which accordingly is added
respectively deleted as the reference control takes values in the interior of the control
or goes back to boundary values. We therefore can combine Propositions 5.3 and 5.4
to obtain the following result (c.f., also [15, Sect. 4.1]):

Theorem 5.5. Let Iy = (2.(-), us(+), A (+)) be an extremal lift with regular junctions
at timest;, i=1,...,k, 0=ty <t; < -+ <tx <tgy1 =T. Let Sy denote the solution
to the terminal value problem for the matrix Riccati differential equation

S+SHyry+Hyyr S+ Hyy —t (SHyry 4+ Hyy) Hyl (SHyrys + Hypy)' =0, S,(T) =0,

(5.18)
where all partial derivatives are evaluated along the reference extremal I'y and ¢t =1
on intervals where the control u, takes values in the interior of the control set and

t = 0 otherwise. If the solution S, exists on the full interval [0, T, then there exists
a neighborhood P of x.(T) such that the flow

F:[0,T]x P—=[0,T] xP, (t,p)+ (t,2(t,p)),

is a diffeomorphism on the domain D = {(t,p) : 0 <t <T,p € P}. In this case, the
reference control u, is a strong local minimum for problem [MM]. Specifically, the refer-
ence controlled trajectory (x.,u.) is optimal relative to any other controlled trajectory
(z,u) for which the graph of the trajectory x lies in the set [ (D).

We still specify these formulas for model [MM]. Recall that

g(x)).

Hence
oOH

ﬁzf(m)+

g()
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and thus
Hyr, =D
e =Dfa) + (1 ) Dot
and 1
Hyr
Furthermore,
oH (A g(z)
ou (14 u)?
gives
1 2
Hyp = mADg(m) and  Hy, = fmu,g(z».

In particular,
(SHyry + Hyu) Hb (SHyr oy + Hyu)'

1 T\T T\T\T

= ST @y (59(@) + Dal@)"\T) (Sg(x) + Dg(x)AT) "

Since the indicator function is negative when the control takes values in the interior,
the matrix — (SHyr, + Hyy) Hyl (SHyro o + H,,)" is negative semi-definite and the
existence of a solution to the Riccati differential equation (5.18) is not guaranteed
a priori by comparison results for solutions to Riccati differential equations. Indeed,
this constitutes a true requirement for local optimality. In fact, it can also be shown
that the existence of a solution on the interval (0,77 (open at the initial time) is
a necessary condition for strong local optimality of the reference trajectory and thus
these statements correspond to the Jacobi conditions in the calculus of variations.

6. CONCLUSION

In this paper we considered optimal control problems for the administration of one
therapeutic agent when pharmacodynamics was modelled by a Michaelis-Menten
relation, probably the most commonly used model in the pharmaceutical industry. It
was shown that optimal controls are continuous concatenations of segments that consist
of full or no dose controls connected by interior segments. This is in agreement with
an interpretation of the controls as concentrations. Second-order conditions for local
optimality of such extremals were formulated based on the method of characteristics in
terms of the existence of a solution to a piecewise defined Riccati differential equation.

In the current paper we have not yet included a pharmacokinetic model. This
formulation is a good model for a fast-acting drug and it can be argued that this is
always the case on the level of an extended therapy horizon. Nevertheless, for shorter
time intervals such a model should be included. Also, the Michaelis-Menten relation
used in this paper represents the steady-state of an enzyme kinetic reaction and could
be replaced by a differential equation that more generally describes the transient
behavior as well. These questions will be addressed in future work.
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