PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CBRN threats, EU-SENSE system: paving the way for future national security systems – an assessment of the suitability of the concept for the future of national security

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article delves into the impact of the EU-SENSE system on national security strategies, particularly in addressing Chemical, Biological, Radiological and Nuclear (CBRN) threats. It assesses how EU-SENSE, as a technological innovation, revolutionizes Chemical threat detection and management, and its consequent influence on the evolution of national security frameworks and procedures. The study combines firsthand experience from the EU-SENSE project with a critical analysis of relevant literature, culminating in an exploration of the role played by the system in shaping future national security concepts and responding to contemporary security challenges.
Rocznik
Strony
139--156
Opis fizyczny
Bibliogr. 41 poz., rys.
Bibliografia
  • 1. Broughton, E., (2005). The Bhopal disaster and its aftermath: a review. Environmental Health, 4, 6.
  • 2. Chakalian, P.M., (2019). Mechanisms of Social Vulnerability to Environmental Hazards. Arizona: Arizona State University.
  • 3. Chan, T.C., Killeen, J., Griswold, W., & Lenert, L., (2004). Information technology and emergency medical care during disasters. Academic Emergency Medicine, 11(11), 1109–1251.
  • 4. Das, S. & Thomas, S., (2022). Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects. Elsevier.
  • 5. Davidson, Ch.E., Dixon, M.M., Williams, B.R., Gary, K., (2020). Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays. ACS Sens., 5, 4, 1102–1109.
  • 6. Ganesan, K., Raza, S.K., Vijayaraghavan, R., (2010). Chemical warfare agents. J Pharm Bioallied Sci., Jul-Sep, 2(3), 166–178.
  • 7. Gawlik-Kobylińska, M., Gudzbeler, G., Szklarski, Ł., Kopp, N., Koch-Eschweiler, H., Urban, M., (2021). The EU-SENSE System for Chemical Hazards Detection, Identification, and Monitoring. Applied Sciences, 11(21):10308. https://doi.org/10.3390/app112110308
  • 8. Gawlik-Kobylińska, M., Urban, M., Gudzbeler, G., Misiuk, A., (2021). Simulationbased training in the use of the EU-SENSE CBRN reconnaissance device: a case study. Proceedings of the 11th International Defence and Homeland Security Simulation Workshop (DHSS 2021), pp. 40–47. DOI: https://doi.org/10.46354/i3m.2021.dhss.006
  • 9. Gikiewicz, M., Kozioł, J., (2022). A concept approach to use of the EU-SENSE system in exercises based on the Kolb’s learning cycle. Security and Defence Quarterly, 37(1), 94–102. https://doi.org/10.35467/sdq/146563
  • 10. Gromek, P., (2023). Epidemic Risk Reduction. A Civil Protection Approach. Routledge: New York - Oxon.
  • 11. Gromek, P., Gudzbeler, G., (2021). Wpływ COVID-19 na system bezpieczeństwa wewnętrznego w Polsce. Wymiar funkcjonalny. Zeszyty Naukowe SGSP, 2(80):33–56. DOI: 10.5604/01.3001.0015.6469
  • 12. Gromek, P., Szklarski, Ł., (2023). Modern technologies in enhancing situational awareness and preparedness for CBRN events in urban areas. Perspective of European Commission call in 2022. Journal of Modern Science, 53(4), 362–390. DOI: 10.13166/jms/176678
  • 13. Herrmann, A., (2011). The Chemistry and Biology of Volatiles. John Wiley & Sons.
  • 14. Hincal, F., & Erkekoglu, P., (2006). Toxic Industrial Chemicals (TICs) – Chemical Warfare Without Chemical Weapons. FABAD J. Pharm. Sci., 31, 220–229.
  • 15. https://project-chimera.eu/ [21.01.2024].
  • 16. Ivanenko, O., (2020). Implementation of risk assessment for critical infrastructure protection with the use of risk matrix. Science Rise, No. 2 (67), 26–38.
  • 17. Kaniewski P. et al., (2023). Heterogeneous Wireless Sensor Networks Enabled Situational Awareness Enhancement for Armed Forces Operating in an Urban Environment, 2023 Communication and Information Technologies (KIT), Vysoke Tatry, Slovakia, 2023, pp. 1–8, DOI: 10.1109/KIT59097.2023.10297058
  • 18. Kozioł, J., Gikiewicz, M., Gromek, P., Szklarski, Ł., (2021). EU-SENSE detection system in mass gathering evacuation. Zeszyty Naukowe SGSP, 1(80):175-197 DOI:10.5604/01.3001.0015.6484
  • 19. Levy, B.S., & Bissell, R.A., (2013). Terrorism and Public Health: A Balanced Approach to Strengthening Systems and Protecting People. Oxford University Press.
  • 20. Mlsna, T.E., & Cemalovic, S., (2006). Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sensors and Actuators B: Chemical, 116(1–2), 192–201.
  • 21. National Research Council, Committee to Review the Department of Homeland Security’s Approach to Risk Analysis (2010). Review of the Department of Homeland Security’s Approach to Risk Analysis. National Academies Press.
  • 22. NATO Advanced Research Workshop on Defence Against Weapons of Mass Destruction Terrorism (2009). Defence Against Weapons of Mass Destruction Terrorism. IOS Press.
  • 23. Okumura, T., Suzuki, K., Fukuda, A., Kohama, A., & Takasu, N., (1998). The Tokyo Subway Sarin Attack: Disaster Management, Part 1: Community Emergency Response. Academic Emergency Medicine, 5(6), 557–653.
  • 24. Patwary, M.A. & O’Hare, W.T., (2011). Assessment of occupational and environmental safety associated with medical waste disposal in developing countries: A qualitative approach. Safety Science, 49(8–9), 1200–1207.
  • 25. Pitz, D., Lee, C., Kasprzyk-Hordern, B., Campo, P., Fenner, K., & Hollender, J., (2015). Characterisation of the ecotoxicity of hospital effluents: A review. Chemosphere, 45(5), 600–612.
  • 26. Price, R.M., (1997). The Chemical Weapons Taboo. New York: Cornell University Press.
  • 27. Radonovich, L.J., Cheng, J., Shenal, B.V., Hodgson, M., & Bender, B.S., (2009). Respirator tolerance in health care workers. JAMA, 301(1), 36–38.
  • 28. Richardt, A. & Blum, M.M., (2008). Decontamination of Warfare Agents: Enzymatic Methods for the Removal of B/C Weapons. Weinheim: Wiley-VCH Verlag GmbH & Co. KGa.
  • 29. Sidell, F.R., Takafuji, E.T., & Franz, D.R., (1997). Medical aspects of chemical and biological warfare. Washington: United States Government Printing.
  • 30. Sparks, E., (2012). Advances in Military Textiles and Personal Equipment. Elsevier.
  • 31. Szklarski, Ł., (2024a). Zastosowanie biometrii w zautomatyzowanej kontroli granicznej jako podstawowe narzędzie bezpieczeństwa granic Unii Europejskiej. Warsaw: Difin.
  • 32. Szklarski, Ł., (2024b). CBRN Threats: The Impact of EU-RADION on European Security: Addressing Radiological Threats in a New Era. Acad J Politics and Public Admin., 1(1): 555555.
  • 33. Szklarski, Ł., (2023). CBRN threats – advancing national security through interdisciplinary innovations: an analytical framework for chemical hazard detection technologies. Zeszyty Naukowe SGSP, 2 (88), p. 93–118. DOI: 10.5604/01.3001.0054.1466
  • 34. Szklarski, Ł., (2021). Diagnoza potrzeb w zakresie usprawnienia technologii i sprzętu służącego reagowaniu na incydenty o charakterze CBRN. Zarys problemu z perspektywy europejskich straży pożarnych. Zeszyty Naukowe SGSP, 2(80):142–160. DOI: 10.5604/01.3001.0015.6474
  • 35. Szklarski, Ł., (2016). Sensor Network Deployment Optimization for Improved Area Coverage Using a Genetic Algorithm. Security Dimensions, no. 19, 150–181.
  • 36. Szklarski, Ł., Jakubowska, A., Maik, P., Wołoszczuk, K., Wieczorek, A., Krajewski, P., (2023). Metody pomiaru promieniowania i identyfikacji nuklidów w zdarzeniach CBRN: analiza badawcza z projektu Eu-Radion. Postępy Techniki Jądrowej. 66, pp. 2–17.
  • 37. Szklarski, Ł., Maik, P., Walczyk, W., (2020). Developing a novel network of CBRNe sensors in response to existing capability gaps in current technologies, Proc. SPIE 11416, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, 114160Y (24 April 2020); https://doi.org/10.1117/12.2558044
  • 38. Toader, G., Rotariu, T., & Pulpea, D., (2021). Polymeric blends designed for Surface decontamination. U.P.B. Sci. Bull., Series B, 83(3).
  • 39. Tomassoni, A.J., French, R.N.E., Walter, F.G., (2015). Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emerg MedClin North Am., Feb;33(1):13–36. DOI: 10.1016/j.emc.2014.09.004
  • 40. Webber, M.E., Pushkarsky, M., & Patel, C.K.N., (2005). Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. Journal of Applied Physics, 97.
  • 41. Wood, J.P. & Adrion, A.C., (2019). Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environ Sci Technol., 6;53(8), 4045–4062. DOI:10.1021/acs.est.8b05274
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5096011a-fcfd-49fd-9966-e2974d886cfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.