PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active Capping Treatment of Copper and Chromium Contaminated Sediment with Bentonite Kaolin and Sand to Inhibit their Release to the Overlying Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The public concern over sediment contamination brought on by mining operations, excessive use of chemical fertilisers or pesticides, industrial, agricultural, and municipal effluent, is increasing. Dredging is a more expensive treatment option than in situ capping of polluted sediment for immobilising pollutants in sediments on site. In order to stop the release of Cr and Cu from chemically contaminated sediments, this study aimed to evaluate the efficiency of utilising active capping materials such as bentonite (B), kaolin (K), and a 1:1 combination of bentonite and kaolin (BK) as capping materials. In a 90-day laboratory experiment carried out in glass tanks with a 1 cm thickness cover of capped material plus sand spread over the polluted sediment, the efficacy of B, K, and BK in inhibiting trace metal leachability was examined. The findings demonstrated that B and BK decreased the ability of sediments to leach Cr and Cu. The results suggest that BK and B should be considered as a suitable active material for capping treatment of polluted sediment sites because of their high Cu and Cr trapping. According to an analysis of adsorption kinetics, chemisorption was the adsorption process. The outcomes of this study demonstrated the potential for using kaolin, a bentonite-kaolin clay mixture covered with sand, and bentonite as capping materials for the in-situ treatment of Cr and Cu polluted coastal sediments.
Słowa kluczowe
Rocznik
Strony
264--272
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Department of Civil Engineering, Faculty of Engineering Technology, Pagoh Higher Education Hub, 84600 Pagoh, Muar, Johor, Malaysia
  • Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • Department of Earth Science and Environment, Faculty of Science and Technology, The National University of Malaysia, Bangi, Selangor, Malaysia
Bibliografia
  • 1. Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., Beolchini, F. 2015. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24–36.
  • 2. Bardos, R.P., Morgan, P., Swannell, R.P. 2000. Application of in situ Remediation. Land Contamination & Reclamation, 8(4), 4.
  • 3. Beckingham, B., Buys, D., Vandewalker, H., Ghosh, U. 2013. Observations of limited secondary effects to benthic invertebrates and macrophytes with activated carbon amendment in river sediments. Environmental toxicology and chemistry, 32(7), 1504–1515.
  • 4. Belin, S, Sany, S.B.T., Salleh, A., Rezayi, M., Saadati, N., Narimany, L., Tehrani, G.M. 2013. Distribution and contamination of heavy metal in the coastal sediments of Port Klang, Selangor, Malaysia. Water, Air, & Soil Pollution, 224(4), 1476.
  • 5. Benami, M., Gross, A., Herzberg, M., Orlofsky, E., Vonshak, A., Gillor, O. 2013. Assessment of pathogenic bacteria in treated graywater and irrigated soils. Sci. Total Environ., 458–460, 298–302.
  • 6. Carberry, J.B., Wik, J. 2001. Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health, Part A, 36(8), 1491–1503.
  • 7. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., et al. 2016b. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J. Hazard. Mater., 312, 184–191.
  • 8. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., et al. 2016a. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J., 284, 582–598.
  • 9. Duan, J., Su, B. 2014. Removal characteristics of Cd (II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal, 246, 160–167.
  • 10. Fadaei, H., Watson, A., Place, A., Connolly, J., Ghosh, U. 2015. Effect of PCB bioavailability changes in sediments on bioaccumulation in fish. Environmental science & technology, 49(20), 12405–12413.
  • 11. Förstner, U., Apitz, S.E. 2007. Sediment remediation: US focus on capping and monitored natural recovery. Journal of Soils and Sediments, 7(6), 351–358.
  • 12. Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci., 176(1), 20–30
  • 13. Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D., Menzie, C.A. 2011. In-situ Sorbent Amendments: A New Direction in Contaminated Sediment Management. Environmental Science & Technology, 45(4), 1163–1168.
  • 14. Gomez-Eyles, J.L., Yupanqui, C., Beckingham, B., Riedel, G., Gilmour, C., Ghosh, U. 2013. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environmental science & technology, 47(23), 13721–13729.
  • 15. Guiwei, Q., De Varennes, A., Cunha‐Queda, C. 2008. Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth. Soil Use and Management, 24(4), 350–356.
  • 16. Han, H., Rafiq, M. K., Zhou, T., Xu, R., Mašek, O., Li, X. 2019. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of hazardous materials, 369, 780–796.
  • 17. Huifen, Y., Wen, M., Weina, Z., Zhiyong, W. 2011. Steel slag as multi-functional material for removal of heavy metal ions in wastewater. In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, IEEE, 1287–1290.
  • 18. Jacobs, P.H., Förstner, U. 1999. Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Research, 33(9), 2083–2087.
  • 19. Jiang, M.Q., Jin, X.Y., Lu, X.Q., Chen, Z.L. 2010. Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination, 252(1–3), 33–39.
  • 20. Knox, A.S., Paller, M.H., Roberts, J. 2012. Active capping technology—new approaches for in situ remediation of contaminated sediments. Remediation Journal, 22(2), 93–117.
  • 21. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., Naidu, R. 2016. In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. In Reviews of Environmental Contamination and Toxicology. Springer, Cham, 236, 1–115.
  • 22. Nayar, S., Goh, B., Chou, L. 2004. Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicol Environ Saf, 59, 349–369.
  • 23. Peng, J.F., Song, Y.H., Yuan, P., Cui, X.Y., Qiu, G.L. 2009. The remediation of heavy metals contaminated sediment. J. Hazard. Mater., 161(2–3), 633–640.
  • 24. Perelo, L.W. 2010. Review: in situ and bioremediation of organic pollutants in aquatic sediments. Journal of Hazardous Materials, 177(1), 81–89.
  • 25. Sany, B.T., Sulaiman, A.H., Monazami, G.H., Salleh, A. 2011. Assessment of sediment quality according to heavy metal status in the West Port of Malaysia. World Academy of Science, Engineering and Technology, 74, 639–643.
  • 26. Sari, A., Tuzen, M., Citak, D., Soylak, M. 2007. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. Journal of hazardous materials, 149(2), 283–291.
  • 27. Shi, L. N., Lin, Y. M., Zhang, X., Chen, Z.L. 2011. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 171(2), 612–617.
  • 28. Sun, Y., Li, Y., Xu, Y., Liang, X., Wang, L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci., 105-106, 200–206.
  • 29. Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Braun, J. (2014). Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1, 1, 1-trichloroethane. Journal of contaminant hydrology, 164, 88–99.
  • 30. Wang, X.T., Miao, Y., Zhang, Y., Li, Y.C., Wu, M.H., Yu, G. 2013b. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity shanghai: occurrence, source apportionment and potential human health risk. Sci. Total Environ., 447, 80–89.
  • 31. Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., et al., 2012. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ., 424, 1–10.
  • 32. Zeng, G., Cheng, M., Huang, D., Lai, C., Xu, P., Wei, Z., et al. 2015. Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues. Waste Manag., 38, 424–430.
  • 33. Zhang, Y., Dong, X., Jiang, Z., Cao, B., Ge, S., Hu, M., 2013a. Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health. Environ. Sci. Pollut. Res., 20(8), 5773–5780.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50959685-d23f-4840-9781-f92a954461ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.