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Abstract

This paper presents thermodynamic fundamentals for the generation of power in the hierarchical
j -cycle systems.
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1 Introduction

The highest theoretical efficiency of generating mechanical energy (and, as a con-
sequence, electric energy) in thermodynamic systems can be achieved by adopting
Carnot cycle, Fig. 1. This efficiency is expressed by the equation

ηC = 1−
Tamb

Th

, (1)

and the power output from Carnot heat engine by the formula

NC = ηCQ̇d , (2)

where: Q̇d – stream of the driving heat, Tamb – absolute temperature of the cold
reservoir (environment), Th – absolute temperature of the hot reservoir.

The power NC is equivalent with the exergy stream, Ḃ, of stream of heat, Q̇d,
transferred from the source with the temperature of Th = const: NC ≡ ḂQ̇d

.
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Figure 1. Comparative cycle (theoretical) of a single-fuel gas-steam system (GT – Joule’s cycle
of the gas turbine, ST – Clausius-Rankine cycle of the steam turbine, Qd – driving
heat transferred into GT, Hfg – enthalpy of flue gas exiting from the gas turbine
transferred to ST through heat recovery steam generator; dashed line marks Carnot
cycle for the extreme temperatures Tamb and Th).

If a power plant were to realize the Carnot cycle (which is technically impossible),
for the temperatures Th = Tcom = 1600 K and Tamb = 300 K its efficiency, under
the assumption of a lack of losses during the conversion of mechanical energy into
electric energy, would be ηC = 81% (Tcom denotes the temperature of the com-
bustion of coal in the boiler). Concurrently, the gross efficiency of a steam based
Clausius-Rankine cycle realized in a power station is smaller by around 50%. For
instance, for a 370 MW power unit operating under subcritical parameters this
efficiency is equal to mere 41%.

From Eq. (1), a conclusion can be made that the same stream of heat, Q̇d,
transferred from the source with the temperature of Th = const can be trans-
formed into mechanical power to the greater degree the higher the value of tem-
perature Th. The power (stream of exergy) losses as a result of lowering the
temperature from Th1 to Th2 (Th1 > Th2) is equal to:

∆NC = δḂ = Q̇d

(

1−
Tamb

Th1

)

− Q̇d

(

1−
Tamb

Th2

)

= TambQ̇d
Th1 − Th2

Th1Th2

. (3)

The value on the right hand side of Eq. (3) concurrently denotes the loss of
exergy stream in the irreversible heat transfer between the two sources with the
temperatures of Th1 = const and Th2 = const. This loss can be expressed also in
terms of the increase of their entropy streams (compare Eq. (8)).

By analogy to formula (1), the energy efficiency of any cycle can be expressed
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by the equation [1, 3]:

ηC = 1−
T̄out

T̄in

, (4)

where the temperature Th of the isotherm of the Carnot cycle that is equal to the
temperature of the hot reservoir can be replaced by the entropy averaged temper-
ature T̄in during the transfer of heat into a medium in an arbitrarily considered
cycle (Eq. (5)), and the temperature Tamb of the isotherm of the Carnot cycle
of the cold reservoir, i.e., the environment, is replaced by the entropy averaged
temperature T̄out during the extraction of heat from an arbitrary cycle, Fig. 2.

Figure 2. Thermodynamic cycle.

The introduction of mean thermodynamic temperatures T̄out and T̄in for the
subsequent input and output of heat from a system (which are calculated for
the actual temperatures and pressures at the beginning and output from these
processes, i.e., for irreversible processes), makes it possible to present any cycle
in a temperature-entropy (T–s) coordinate system in the form of a rectangular
shape (Fig. 2), regardless of the nature of the processes of the physical changes
occurring during them, including those in which actual effective work is exerted,
whether reversible or not. The exergy losses as a result of the friction during these
conversions only have to be involved in the mean values of the entropy changes at
temperatures of the heat input, T̄in, and output, T̄out, from a system only in the
case if predefined correction measures are adopted. The quotient of the averaged
temperatures during these conversions has to apparently equal to the quotient of
the heat output, Q̇out, and input, Q̇in, into a give cycle [1, 3].

From the relation in (4) it stems that the generation of electricity in the
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cycles of thermal power plants should be undertaken for a technically maximum
temperature T̄in of the circulating medium during the input of stored heat, i.e.,
heat from an external source and for the lowest temperature T̄out of the medium
output of heat from the cycle in a power plant.

Clausius-Rankine cycle is followed in a coal-fired power plants (Fig. 1). From
the thermodynamic perspective, its fundamental drawback is associated with the
low mean thermodynamic temperature T̄in of the circulating media – water, W ,
and steam, S, (also called the entropy averaged temperature) during isobaric
process of the heat Qin transfer into this cycle in the boiler (compare Eqs. 6–7):

T̄in =
Qin

∆S
=

∫ SS

SW
Tin(s)ds

sS − sW
=

hS − hW
sS − sW

, (5)

where: ∆S – increase of the entropy of the circulating medium, h, s – specific
enthalpy and entropy of the circulating medium.

In a 370 MW power unit, the thermal parameters of the water fed into the
boiler are equal to: 225 ◦C/23.5 MPa (hW = 1110.8 kJ/kg, sW = 2.7947 kJ/(kgK)),
hence, the mean thermodynamic temperature is equal to only T̄in = 636 K(while
accounting for interstage steam superheating T̄in = 640.7 K). Concurrently, the
temperature of the combustion of coal in the boiler is equal to around Tcom =
1600 K. Therefore, the temperature difference Tcom − T̄in

∼= 1000 K is consid-
erable, which along with the low temperature T̄in results in small efficiency of
generating electricity in a power unit (from Eqs. 1–4) it stems that it is equal to
mere 41% gross (which is 37% net).

The power losses expressed by the Eq. (3) takes place in the steam boiler,
while Q̇d = Ėcoal

ch (Ėcoal
ch denotes the stream of chemical energy of the coal) is

equal to the product of the stream of coal combustion in the boiler, Ṗ , and its
net calorific value, NCV: Q̇d = Ėcoal

ch = Ṗ (NCV ); and temperatures Th1 and
Th2 are equal to: Th1 = Tcom and Th2 = T̄in. In terms of numbers, the loss of
power is equal to 30% of the driving heat Q̇d: Tamb(Tcom − T̄in)/(TcomT̄in) =
300(1600 − 636)/(1600) × 636 ∼= 30%. Thus, despite its high energy efficiency,
reaching 94%, the steam boiler forms the major source of the low efficiency of gen-
erating electric power in steam power plants operating in the Clausius-Rankine
cycle. However, the considerable advantage of the Clausius-Rankine cycle is the
low temperature T̄out in it. The condensation isotherm in it nearly overlaps with
the isotherm of the ambient temperature in the Carnot cycle, T̄out

∼= Tamb (Fig. 1).
The use of the higher range of temperature, even starting from the tempera-

ture of gas combustion Tcom=1500 ◦C is taken advantage of in gas turbogenerators.
The production of electric power in it occurs by direct expansion of exhaust gas
from the temperature and pressure in the combustion chamber to the ambient
pressure. Hence, a coupling of the steam system with the gas system, whose ad-
vantage involves a considerably higher temperature T̄in compared with the steam
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boiler (the disadvantage of the gas system involves also the high temperature T̄out

of the circulating medium during the extraction of heat from it), results in the use
of the advantages of the two cycles while avoiding their drawbacks. As a result,
the efficiency of producing electricity in power plants adapted to a gas-steam
system considerably increases. The device which couples the two cycles is the
heat recovery steam generator. The steam produced in it has identical thermal
parameters as the steam from the coal-fired boiler. The total stream of fresh
steam from the heat recovery steam generator and coal-fired boiler is equal to the
stream of steam prior to when the system was not repowered. The production of
steam in the heat recovery steam generator applies the stream of low-temperature
enthalpy of the flue gas, Hfg, from the gas turbine. Thus, its enthalpy partly re-
places the use of coal in the existing coal-fired system, due to which the use of
coal is limited. As a result, the loss of the unused higher range of temperatures
Tcom − T̄in

∼= 1000 K is reduced. As an additional consequence, the efficiency
of the generation of electricity in dual-fuel gas-steam systems is improved. This
efficiency increases along with the increase of the capacity of the gas turbine and
it can reach as much as by 10 The highest efficiency, Eq. (19), even as much
as 60%, is possible in single-fuel gas-steam systems (Figs. 1,4) [1, 3], where the
coal-fired boiler is excluded and, thus, the phenomenon of unused higher range of
the temperature of the flue gas is avoided. The total driving heat, Q̇d, from the
combustion of gas (or liquid fuel, a very attractive concept in terms of energy and
economic efficiency involves direct coal combustion in a gas turbine) is input into
a gas turbine operating under the Joule’s cycle (Fig. 1).

The steam-based section still operates in the Clausius-Rankine cycle, but the
driving heat for the production of steam originates only from the low-temperature
enthalpy of the flue gas, Hfg, extracted from the gas turbine. As a result, the
loss of the unused higher range of temperatures is avoided while the efficiency of
the production of electricity increases in comparison to the system solely based
on steam. Such an increase of efficiency can be explained in a form of a chart.
As one can see in Fig. 1, the Carnot cycle is supplemented by the Joule’s cycle,
as a result of which there is a considerable reduction of the surface areas of the
conversion phenomena in the Clausius-Rankine cycle and Carnot cycle.

2 Thermodynamic analysis of hierarchical j -cycle

systems

In a general case, the number of circulating media can be arbitrarily large. A hi-
erarchical, j -cycle, system is presented in Fig. 3. An increase of the number
of media with various temperatures of the operating range makes it possible to
apply in a system higher range of the temperature increase between the upper
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and lower heat sources (environment). Thereby, exergy losses in the system are
reduced and the production of electricity increases. The disadvantage of such a
solution includes an increase of investment required to start the system.

Figure 3. Diagram of hierarchical j -cycle heat engine.

Generally, the loss of exergy stream δḂ = Tamb(
∑

k ∆Ṡmed +
∑

l ∆Ṡso) in a hi-
erarchical ‘j -cycle’ system comes as a consequence of mere increase of entropy
streams of external heat sources

∑

l ∆Ṡso) which are in contact with it [1, 3] (in
practice we usually have to do with two sources, l = 2). The substitution of
actual open cycle processes by closed-loop system, which normally facilitates the
thermodynamic analysis of such processes, leads to a lack of consideration of the
media input and output from the system; hence, the increase of entropy streams
is equal to zero,

∑

k ∆Ṡmed = 0. Hence, an increase of the entropy of the bodies
which participate in the phenomenon is expressed only in terms of the increase of
the entropy of heat sources. This increase can then be expressed in terms of the
total of entropy increases in irreversible heat flow between the sources and cycles
as well as between the cycles.

One can note in this place that the increase of entropy of the external source
of heat with the temperature Tso = const which delivers heat Q into the system
can be derived from the definition of entropy

∆Sso = −

∫

dQ

Tso
= −

Q

Tso
. (6)

The minus sign in Eq. (6) denotes that the positive heat was extracted from the
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source. For the source which pulls heat from the system, it is only necessary in
Eq. (6) to change the sign

∆Sso = +

∫

dQ

Tso
= +

Q

Tso
. (7)

By applying the Eqs. (6) and (7) the loss of exergy stream δḂ in a closed system
with two heat sources with the temperatures of Th and Tamb (Fig. 3) can be
expressed by the equation [1, 3] (compare Eq. (3)):

δḂ = Tamb

∑

2

∆Ṡso = Tamb

(Q̇amb

Tamb

−
Q̇d

Th

)

=

j+1
∑

i=1

δḂi = Tamb

j+1
∑

i=1

Q̇in
T̄out i−1 − T̄in i

T̄out i−1T̄in i

,

(8)
and the capacity of the system by the equation

N = NC − δḂ = Q̇d

Th − Tamb

Th

− Tamb(
Q̇amb

Tamb

−
Q̇d

Th

) =

=

j
∑

i=1

Ni =

j
∑

i=1

(Q̇in i − Q̇out i) =

j
∑

i=1

Q̇ini

T̄in i − T̄out i

T̄in i

=

= Q̇d

Th − Tamb

Th

− Tamb

j
∑

i=1

Q̇in i
T̄out i−1 − T̄in i

T̄out i−1T̄in i

,

(9)

where:
j – number of circulating media (engines),
NC , Ni – capacity of a theoretical Carnot engine and actual engines,

Q̇in i, Q̇out i – heat of stream input into and output from an ith cycle (engine),
while Q̇out i = Q̇in i+1 and Q̇in i ≡ Q̇d, Q̇in j+1 ≡ Q̇amb,

Q̇amb, Q̇d – stream of heat transmitted from the system into the environ-
ment and delivered from the upper source of heat,

T̄in i, T̄out i – mean thermodynamic temperature of the absorbing medium,
and giving off heat in an ith cycle (engine), while T̄in j+1 ≡

Tamb, T̄out 0 ≡ Th,
Th – absolute temperature of the upper source of heat.

The value of (T̄in i − T̄out i)/T̄in, the last term of the Eq. (9), represents the
energy efficiency of an ith (i = 1 ÷ j) engine operating between entropy aver-
aged temperatures in actual processes of heat input and output T̄in i, T̄out i from
a system (compare Eq. (4), Fig. 2):

ηi = 1−
T̄out i

T̄in i

. (10)
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The stream of heat output from an ith cycle (engine) by means of entropy averaged
temperatures can only be expressed by streams of heat Q̇in i = Q̇d delivered into
the system from the source with the temperature T̄out 0 ≡ Th,

Q̇out i = Q̇in i+1 = Q̇d

i
∏

n=1

T̄out n

T̄in n

. (11)

From Eq. (11) we obtain the relation for the heat output from the system into
the environment

Q̇amb = Q̇d

j
∏

i=1

T̄out i

T̄in i

. (12)

By applying the relation (11) to the eexpression in Eq. (9) the value of the total
power of the system can be defined as

N =

j
∑

i=1

Ni = Q̇d

(

1−

j
∏

i=1

T̄out i

T̄in i

)

. (13)

The value in the brackets on the right hand side of Eq. (13) denotes the energy
efficiency of generating power in a system with j-cycles expressed by entropy
averaged temperatures:

η1−j = 1−

j
∏

i=1

T̄out i

T̄in i

. (14)

For instance, for a two-cycle system this efficiency, by additionally using relation
(10), can be expressed by the equation

η1−2 = 1−
T̄out 1

T̄in 1

T̄out 2

T̄in 2

= η1 + η2 − η1η2 . (15)

The final form of Eq. (8) which distinguishes the location of the origin of
exergy losses in the system makes it possible to find ways of its thermodynamic
improvement. It indicates the places of greatest exergy losses which determine its
low effectiveness, and therefore, indicates the places in which it could be improved.
It also indicates the entropy averaged temperatures and direction of altering its
values so as to improve the thermodynamic perfection of the system. In addition,
the presented equation makes the quantitative analysis of the reasons which in-
crease this perfection. Furthermore, the analysis of the variability of parameters
of the preceding cycles is possible resulting in a change to exergy losses in the
subsequent phases, thereby affecting exergy losses in the whole system. Thus, it
is possible to undertake the justification for these changes. The final form of the
Eq. (8) makes it possible to analyze the effect of energy efficiency of the particular
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Figure 4. Diagram of hierarchical, 2-cycle, gas-steam heat engine.

engines (entropy averaged temperatures of circulating media) on the total energy
efficiency of the system.

For the case of a two-cycle system (j = 2), (Figs. 1 and 4), the exergy losses
as a result of irreversible heat flow between the sources and circulating media
(Eq. (8)), the total power of the system (Eq. (9)) and the energy efficiency can
be expressed by the subsequent equations:

• exergy losses

∆ḂG−S = Tamb

(

Q̇d
Th − T̄in1

ThT̄in 1

+ Ḣfg
T̄out 1 − T̄in 2

T̄out 1T̄in 2

+ Q̇amb
T̄out 2 − Tamb

T̄out 2Tamb

)

,

(16)

• power of system

NG−S = NGT +NST = Q̇d

T̄in 1 − T̄out 1

T̄in 1

+ Ḣfg

T̄in2 − T̄out2

T̄in2

=

= Q̇dηGT + ḢfgηST ,

(17)

or by applying the final form of the Eq. (9)

NG−S = NC −∆ḂG−S = Q̇d
Th − Tamb

Th

− Tamb

(

Q̇d
Th − T̄in 1

ThT̄in 1

+

+ Ḣfg

T̄out 1 − T̄in 2

T̄out 1T̄in 2

+ Q̇amb

T̄out 2 − Tamb

T̄out 2Tamb

)

,

(18)
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• energy efficiency (compare Eqs. (10) and (15))

ηG−S =
NGT +NST

Ėgas
ch

= ηGT + ηST − ηGT ηST , (19)

where:

Ėgas
ch ≡ Q̇d – stream of chemical energy of the gas combustion in the gas

engine,
NGT , NST – power of the gas and steam engines,
ηGT , ηST – energy efficiency of the gas and steam engines,
T̄in 1, T̄out 2 – subsequent mean thermodynamic temperature in the combus-

tion chamber of the gas turbine and temperature of steam sat-
uration in the condenser of the steam turbine,

T̄out 1, T̄in 2 – subsequent mean thermodynamic temperature of flue gas and
steam in the heat recovery steam generator.

Only the value of temperature T̄in 2 can be determined by the designer by means
of altering the number of the heating surfaces, as well as their design and sizes,
their location as well by means of adopting temperature intervals, i.e., differences
between the temperature of flue gas and water and steam in the process heat
exchange in the waste boiler. Concurrently, the values of temperatures T̄in 1,
T̄out 1 are relative only to the type of turbogenerator used in a given system and
there is no way of affecting them, as well as no effect that can be possibly made
to temperature T̄out 2, which is relative to ambient temperature.

The expression (compare Eq. (3))

TambḢfg
T̄out 1 − T̄in 2

T̄out 1T̄in 2

, (20)

in Eq. (18) denotes the loss of exergy stream in the heat recovery steam generator
δḂHRSG.

The higher the temperature T̄in1 which can be determined by the designer,
the smaller the losses and, thereby, the greater the electrical capacity of the steam
turbogenerator (Eq. (17))

NST = Ḣfg
T̄in2 − T̄out2

T̄in2

= ḢfgηST . (21)

3 Summary and conclusion

To summarize, the structure of the heat recovery steam generator should be
adopted in a way that ensures that the expression in Eq. ( 20) assumes the lowest
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possible value. The decrease in the value of Eq. (20), which means the reduction
of exergy losses in a power unit, the greater the increase in the production of
electricity in a unit. However, investment required for the power unit is greater,
which can result in the limitation of the economic efficiency of the operation of the
power unit Eq. (22). Therefore, there is a technical and economic optimum, which
has to be sought. Finally, the selection of a specific heat recovery steam generator
in a system should be based on the economic criterion. The necessary condition
is associated with the increase of the revenues from the sales of additional amount
of electricity which has to be greater than the increase of the annual capital cost
and cost of maintenance and overhaul associated with the greater investment ∆J
in the power unit [1, 3]:

∆(δḂHRSG)eelτA ≥ (zρ+ δserv)∆J , (22)

where:
eel – specific sales price of electric energy (per unit)
zρ+ δserv – annual rate of investment service and remaining fixed cost rel-

ative to capital expenditure [1, 2, 4],
τA – time of annual operation of the power plant.

This can ensure that the improvement of the thermodynamic parameters of the
power unit as a result of installing greater number of pressure stages in a heat
recovery steam generator is cost-effective.
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