PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feedback stabilization of one-dimensional parabolic systems related to formations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the problem of stabilizing one-dimensional parabolic systems related to formations by using finitedimensional controllers of a modal type. The parabolic system is described by a Sturm-Liouville operator, and the boundary condition is different from any of Dirichlet type, Neumann type, and Robin type, since it contains the time derivative of boundary values. In this paper, it is shown that the system is formulated as an evolution equation with unbounded output operator in a Hilbert space, and further that it is stabilized by using an RMF (residual mode filter)-based controller which is of finite-dimension. A numerical simulation result is also given to demonstrate the validity of the finite-dimensional controller.
Rocznik
Strony
295--303
Opis fizyczny
Bibliogr. 17, wykr., rys.
Twórcy
autor
  • Department of Applied Mathematics, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
Bibliografia
  • [1] M.J. Balas, “Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters”, J. Math. Anal. Appl. 133, 283-296 (1988).
  • [2] V. Casarino, K.-J. Engel, R. Nagel, and G. Nickel, “A semigroup approach to boundary feedback systems”, Integr. Equ. Oper. Theory 47, 289-306 (2003).
  • [3] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, “Leader-follower formation control of nonholonomic mobile robots with input constraints”, Automatica 44, 1343-1349 (2008).
  • [4] R.F. Curtain and H.J. Zwart, An Introduction to Infinite- Dimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer-Verlag, New York, 1995.
  • [5] J.A. Fax and R.M. Murray, “Information flow and cooperative control of vehicle formations”, IEEE Trans. Automat. Control 49 (9), 1465-1476 (2004).
  • [6] G. Ferrari-Trecate, A. Buffa, and M. Gati, “Analysis of coordination in multi-agent systems through partial difference equations”, IEEE Trans. Automat. Control 51 (6), 1058-1063 (2006).
  • [7] P. Frihauf and M. Krstic, “Leader-enabled deployment onto planar curves: a PDE-based approach”, IEEE Trans. Automat. Control 56 (8), 1791-1806 (2011).
  • [8] D. Fujiwara, “Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order”, Proc. Japan Acad. 43, 82-86 (1967).
  • [9] B. van Keulen, H1-Control for Distributed Parameter Systems: A State-Space Approach, Birkh¨auser, Boston, 1993.
  • [10] G. Lafferriere, A. Williams, J. Caughman, and J.J.P. Veerman, “Decentralized control of vehicle formations”, Systems Control Lett. 54, 899-910 (2005).
  • [11] T. Nambu, “An L2()-based algebraic approach to boundary stabilization for linear parabolic systems”, Q. Applied Mathematics 62, 711-748 (2004).
  • [12] T. Nambu, “A new algebraic approach to stabilization for boundary control systems of parabolic type”, J. Differential Equations 218, 136-158 (2005).
  • [13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44, Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
  • [14] Y. Sakawa, “Feedback stabilization of linear diffusion systems”, SIAM J. Control Optim. 21, 667-676 (1983).
  • [15] H. Sano and N. Kunimatsu, “Feedback stabilization of infinitedimensional systems with A-bounded output operators”, Appl. Math. Lett. 7 (5), 17-22 (1994).
  • [16] H. Sano, “Stability-enhancing control of a coupled transportdiffusion system with Dirichlet actuation and Dirichlet measurement”, J. Math. Anal. Appl. 388, 1194-1204 (2012).
  • [17] H. Tanabe, Equations of Evolution, Iwanami, Tokyo, 1975, (in Japanese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-509034c0-89e6-4f03-97c7-6d70ea31f35b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.