Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The basic measuring element of vibrating-wire strain gauges is a steel piano wire, functioning in the elastic range. This element is constantly under tension. Therefore, its material gradually deforms permanently. This deformation causes its stress to relax. This relaxation results in measurement errors of the strain gauges. This error, as demonstrated by both in situ and laboratory tests, can reach values of even several percent of the strain gauge measuring range (FSR) over periods of 10 years. Therefore, a concept of a differential strain gauge was proposed, for the construction of which two measuring wires would be used. Changing the input value of the strain gauge, i.e. a displacement of one of its anchors in relation to the other one would cause one wire to lengthen while the other wire shortened identically. The measured displacement would be calculated based on the difference in the frequency of the wire vibrations. In this way, the influence of the simultaneous relaxation of the wires on the measurement result would be greatly reduced. Based on this concept, a prototype differential strain gauge for measuring concrete deformation was realized. In addition to two wires, it also contains two electromagnets, placed together with the wires in a common body-housing. After the strain gauge was assembled, its first tests were carried out under laboratory conditions.
Rocznik
Tom
Strony
art. no. e151379
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Strata Mechanics Research Institute Polish Academy of Sciences, Poland
autor
- Strata Mechanics Research Institute Polish Academy of Sciences, Poland
Bibliografia
- [1] G. Cieplok, L. Bednarski, and R. Sieńko, “The application of self-excited wibrations for dynamic strain measurements carried out by vibrating wire tensometers,” Mech. Control, vol. 34, no. 1, pp. 1–7, 2015, doi: 10.7494/mech.2015.34.1.1.
- [2] S. Emmerik et al., “Measuring Tree Properties and Responses Using Low-Cost Accelerometers,” Sensors, vol. 17, no. 5, p. 1098, 2017, doi: 10.3390/s17051098.
- [3] X. Wang, “Thermal strain measurement of EAST W/Cu divertor structure using electric resistance strain gauges,” Fusion Eng. Design, vol. 113, pp. 1–5, 2016, doi: 10.1016/j.nme.2023.101483.
- [4] J.-S. Chen and I.-S. Chen, “Deformation and vibration of a spiral spring,” Int. J. Solids Struct., vol. 64–65, pp. 166–175, 2015, doi: 10.1016/j.ijsolstr.2015.03.022.
- [5] A. Borruto, G. Narducci, and M. Buccitti, “Failure analysis of piano strings,” Eng. Fail. Anal., vol. 35, no. 15, pp. 164–177, 2013, doi: 10.1016/j.engfailanal.2013.01.006.
- [6] A. Kanciruk, Metody tensometryczne w badaniach przemieszczeń, deformacji i zjawisk dynamicznych w gruncie i obiektach budowlanych. Archives of Mining Sciences. Monograph 15, Kraków: Wydawnictwo Instytutu Mechaniki Górotworu PAN, 2012 (in Polish).
- [7] Y. Gao, Q. Li, A. Dong, F. Wang, and X. Wang, “Characterizing the Resistance Relaxation of the Fabric-based Resistive Sensors Based on an Electro-mechanical Model,” Sens. Actuator A-Phys., vol. 310, no. 13, p. 112041, 2020, doi: I10.1016/j.sna.2020.112041.
- [8] A. Szwajcowski and A. Pilch, “Optimization of piano tuning by means of spectral entropy minimization,” Appl. Acoust., vol. 166, p. 107359, 2020, doi: 10.1016/j.apacoust.2020.107359.
- [9] Model 4420 Series, Vibrating Wire Crackmeter, Instruction Manual, Gekon. [Online]. Available: https://www.geokon.com/content/manuals/4420_Crackmeter.pdf (accessed: March 2024).
- [10] Model 4000 Series, Vibrating Wire Strain Gauges, Instruction Manual, Gekon. [Online]. Available: https://www.geokon.com/content/manuals/4000_Strain_Gage.pdf (accessed: March 2024).
- [11] Vibrating Wire Strain Gauge, RST Instruments Ltd. [Online]. Available: https://rstinstruments.com/wp-content/uploads/Vibrating-Wire-Strain-Gauge-ELB0007_24-1.pdf (accessed: March 2024).
- [12] Z. Roliński, Tensometria oporowa. Warszawa: Wydawnictwo Naukowo-Techniczne, 1981 (in Polish).
- [13] V. Gribniak, G. Kaklauskas, and D. Bacinskas, “Shrinkage in reinforced concrete structures: A computational aspect,” J. Civ. Eng. Manage., vol. 14, no. 1, pp. 49–60, 2008, doi: 10.3846/1392-3730.2008.14.49-60.
- [14] M.H. Lai et al., “Shrinkage design model of concrete incorporating wet packing density,” Constr. Build. Mater., vol. 280, no. 10, p. 122448, 2021, doi: 10.1016/j.conbuildmat.2021.122448.
- [15] Gekon. [Online]. Available: https://www.geokon.com/ (accessed: March 2024).
- [16] RST Instruments Ltd. [Online]. Available: https://rstinstruments.com/ (accessed: March 2024).
- [17] NeoStrain Sp. z o.o. [Online]. Available: http://www.neostrain.pl/ (accessed: March 2024).
- [18] L. Szojda and Ł. Kapusta, “Evaluation of the elastic model of a building on a curved mining ground based on the results of geodetic monitoring,” Arch. Min. Sci., vol. 65, no. 2, pp. 213–224, 2020, doi: 10.24425/ams.2020.133188.
- [19] I. Bryt-Nitarska, “Studies of masonry structure technical wear in mining areas,” Arch. Min. Sci., vol. 64, no. 2, pp. 239–249, 2019, doi: 10.24425/ams.2019.128680.
- [20] P. Totaro and B. Chusid, “Multistep anodization of 7075 – T6 aluminum alloy,” Surf. Coat. Technol., vol. 421, p. 127407, 2021, doi: 10.1016/j.surfcoat.2021.127407.
- [21] J.M. Rahm, J. Löfgren, and P. Erhart, “Quantitative predictions of hermodynamic hysteresis: Temperature-dependent character of the phase transition in Pd–H,” Acta Mater., vol. 227, p. 117697, 2022, doi: 10.1016/j.actamat.2022.117697.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-508e4405-d664-41d6-8af0-ab5c2d85e689
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.