Identyfikatory
Warianty tytułu
Koncepcja mikroprocesorowego układu rejestracji zużycia energii w pojeździe podwodnym
Języki publikacji
Abstrakty
The article, on the basis of the underwater vehicle ‘Głuptak’ intended to combat naval mines, outlines the general concept of the microprocessor system of registration of change of electricity stored in batteries for the underwater vehicle at the implementation time of the set task. Registration system the amount of energy allows you to optimize the implementation of the working time of the underwater vehicle drive system in conditions of interference type underwater sea current.
W artykule, wykorzystując pojazd podwodny „Głuptak” przeznaczony do zwalczania min, przedstawiono ogólną koncepcję mikroprocesorowego układu rejestracji zmian energii elektrycznej zgromadzonej w akumulatorach pojazdu podwodnego w czasie realizacji postawionego zadania. System rejestracji ilości energii pozwala na optymalizację realizacji czasu pracy systemu napędowego pojazdu podwodnego w warunkach działania zakłóceń typu podwodnego prądu morskiego.
Czasopismo
Rocznik
Tom
Strony
55--68
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69 Str., 81-127 Gdynia, Poland
Bibliografia
- [1] Fossen T. I., Fjellstad O. E., Nonlinear modelling of marine vehicle in 6 degrees of freedom, ‘Journal of Mathematical Modelling of Systems’, 1995, No. 1, pp. 17–28.
- [2] Fossen T. I., Guidance and Control of Ocean Vehicles, John Wiley & Sons Ltd., 1994.
- [3] Garus J., Dynamika i sterowanie bezzałogowego statku głębinowego, ‘Zeszyty Naukowe Akademii Marynarki Wojennej’ [Scientific Journal of Polish Naval Academy], 2005, No. 162 A [Dynamics and control of unmanned deep water vehicle — available in Polish].
- [4] Leszczyński T., The effect of interference parameters on the exploitation capabilities of an underwater vehicle, ‘Zeszyty Naukowe Akademii Marynarki Wojennej’ [Scientific Journal of Polish Naval Academy], 2016, No. 3, pp. 85–106.
- [5] Lin X., Fu H. et al., Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management, ‘Oil & Gas Science and Technology’, 2013, Vol. 68, No. 1, pp. 165–178.
- [6] Perez H. E., Ding Y. et al., Parameterization and Validation of an Integrated Electro-thermal Cylindrical LFP Battery Model, ASME 2012 5th Annual Dynamic Systems and Control Conference, Fort Lauderdale 2012.
- [7] Rowiński L., Opis rozwiązań technicznych analizowanych dla samobieżnego ładunku niszczącego, report on research work, Gdańsk University of Technology, Gdańsk 2002 [Description of technical solutions analyzed for Self-Propelled Destructive Cargo — available in Polish].
- [8] Department of Ship Design and Subsea Robotics, Gdańsk University of Technology, [online], www.underwater.pg.gda.pl [access 04.08.2017].
- [9] Hydrodynamic forecasts of the Baltic Sea from the HIROMB model, [online], http://baltyk. pogodynka.pl/ftp/hiromb/hiromb/index.html [access 04.08.2017].
- [10] ACS758. Datasheet, pdf, [online], https://www.allegromicro.com [access 20.04.2017].
- [11] Digital Compass Solution HMR3000. Datasheet, pdf, [online], https://aerocontent.honeywell. com [access 24.04.2017].
- [12] GG1320AN Digital Ring Laser Gyroscope. Datasheet, pdf, [online], https://aerocontent. honeywell.com [access 11.02.2015].
- [13] Headway LiFePo4. Datasheet, pdf, [online], www.akkuenergiesysteme.de [access 13.05.2016].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-508a76ba-d152-45da-98b6-0fbc7e4d2fa6