PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości i zastosowanie węgli aktywnych otrzymanych z materiałów polimerowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Properties and applications of activated carbons obtained from polymeric materials
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wyniki badań dotyczących wytwarzania, charakteryzacji i zastosowania węgli aktywnych otrzymanych z materiałów polimerowych, w tym z polimerów odpadowych. Opisano najważniejsze metody karbonizacji polimerów, a następnie ich aktywacji za pomocą różnych czynników aktywujących, takich jak KOH, CO2 i H2O. Wykazano, że węgle o bardzo dobrych parametrach struktury porowatej można otrzymać z sulfonowanej żywicy styrenowo-diwinylobenzenowej oraz z poli(chlorku winylidenu), a spośród polimerów odpadowych – z poli(tereftalanu etylenu). Opisano metody badań właściwości fizykochemicznych węgli aktywnych otrzymanych z polimerów, w tym przede wszystkim ich właściwości adsorpcyjnych. Jeden z najlepszych węgli aktywnych otrzymany z sulfonowanej żywicy styrenowo-diwinylobenzenowej miał powierzchnię właściwą bliską 4000 m2/g, całkowitą objętość porów 2,1 cm3/g i był w stanie zaadsorbować 40% wag. CO2 na gram węgla w temperaturze 0°C pod ciśnieniem 1 bar oraz 4% wag. H2 na gram węgla w temperaturze –196°C pod ciśnieniem 1 bar. Przedstawiono możliwości wykorzystania węgli aktywnych otrzymanych z materiałów polimerowych do adsorpcji CO2 i H2, ale również do adsorpcji CH4, C6H6, NO, CO, O2, SO2 i NH3. Węgle otrzymane z polimerów odpadowych mogą być wykorzystane do adsorpcji barwników, herbicydów, jonów metali śladowych z wody oraz lotnych związków organicznych z powietrza. Interesujące są również próby wykorzystywania tych węgli do budowy elektrod baterii i superkondensatorów. Węgle aktywne otrzymywane z materiałów polimerowych cieszą się dużym zainteresowaniem, ponieważ mają bardzo dużą powierzchnię właściwą, dużą objętość porów, a jednocześnie są produkowane w dużych ilościach i mają przystępną cenę.
EN
Results of studies on the synthesis, characterization and applications of activated carbons from polymeric materials, including polymer wastes, were presented. The major methods of polymer carbonization were described as well as of their activation by different activators such as KOH, CO2 and H2O. Carbons of very good porous structure parameters could be obtained from sulfonated styrene-divinylbenzene resins and polyvinylidene chloride but also from polyethylene terephthalate that represents polymer wastes. Methods for physicochemical characterization of activated carbons obtained from polymers were briefly presented, mainly in relation to their adsorption properties. One of the best activated carbons obtained from sulfonated styrene-divinylbenzene resin had the specific surface area close to 4000 m2/g, total pore volume of about 2.1 cm3/g and could adsorb 40 wt % CO2 per 1 gram of carbon at 0°C and under the pressure of 1 bar, and also 4 wt % H2 per 1 gram of carbon at –196°C, under the pressure of 1 bar. Potential applications of these activated carbons for adsorption of CO2 and H2 as well as CH4, C6H6, NO, CO, O2, SO2 and NH3 were also presented. Activated carbons obtained from polymer wastes could also be used for adsorption of dyes, herbicides, trace metal ions from water as well as adsorption of volatile organic compounds from the air. Attempts at the use of activated carbons for battery electrode and supercapacitor construction are also interesting. Activated carbons from polymeric materials attract a lot of attention due to their high specific surface area and large pore volume combined with large-scale and low-cost production.
Czasopismo
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 99 poz.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Zakład Chemii, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa
  • Wojskowy Instytut Chemii i Radiometrii, al. gen. Antoniego Chruściela „Montera” 105, 00-910 Warszawa
autor
  • Kent State University, Department of Chemistry and Biochemistry, Kent, Ohio 44242
Bibliografia
  • 1. H. JANKOWSKA, A. ŚWIĄTKOWSKI, J. CHOMA: Active Carbon. Ellis Horwood Ltd., Chichester 1991.
  • 2. R.C. BANSAL, M. GOYAL: Activated Carbon Adsorption. CRC Press, Boca Raton 2005.
  • 3. J. CHOMA: Zastosowanie nanoporowatych materiałów do oczyszczania wody (Application of nanoporous materials in water treatment). Ochrona Środowiska 2011, vol. 33, nr 4, ss. 15–22.
  • 4. A.P. TERZYK, P.A. GAUDEN, P. KOWALCZYK [Eds.]: Carbon Materials: Theory and Practice. Research Signpost, Kerala (India) 2008.
  • 5. T.J. BANDOSZ [Ed.]: Activated Carbon Surfaces in Environmental Remediation. Elsevier, Amsterdam 2006.
  • 6. H. MARSH, E.A. HEINTZ, F. RODRIGUEZ-REINOSO: Introduction to Carbon Technology. Secretariado de Pub., Alicante, Spain, 1997, pp. 35–101.
  • 7. T. WIGMANS: Industrial aspects of production and use of activated carbons. Carbon 1989, Vol. 27, pp. 13–22.
  • 8. J. PASTOR-VILLEGAS, C.J. DURAN-VALLE: Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 2002, Vol. 40, pp. 397–402.
  • 9. M. MOLINA-SABIO, M.T. GONZALEZ, F. RODRIGUEZ-REINOSO, A. SEPULVEDA-ESCRIBANO: Effect of steam and carbon dioxide activation on the micropore size distribution of activated carbon. Carbon 1996, Vol. 34, pp. 505–509.
  • 10. K. GERGOVA, S. ESER: Effect of activation method on the pore structure of activated carbons from apricot stones. Carbon 1996, Vol. 34, pp. 879–888.
  • 11. F. RODRIGUEZ-REINOSO, M. MOLINA-SABIO, M.T. GONZALEZ: The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 1995, Vol. 33, pp. 15–23.
  • 12. R.W. PEKALA: Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, Vol. 24, pp. 3221–3227.
  • 13. H. TENG, S.C. WANG: Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation. Carbon 2000, Vol. 38, pp. 817–824.
  • 14. N. PETROV, T. BUDINOVA, M. RAZVIGOROVA, E. EKINCI, F. YARDIM, V. MINKOVA: Preparation and characterization of carbon adsorbents from furfural. Carbon 2000, Vol. 38, pp. 2069–2075.
  • 15. M. MARZEC, B. TRYBA, R.J. KALEŃCZUK, A.W. MORAWSKI: Poly(ethylene terephthalate) as a source for activated carbon. Polymers for Advanced Technologies 1999, Vol. 10, pp. 588–595.
  • 16. H. NAKAGAWA, K. WATANABE, Y. HARADA, K. MIURA: Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect. Carbon 1989, Vol. 37, pp. 1455–1461.
  • 17. C. PIERCE, J.W. WILEY, R.N. SMITH: Capillary and surface area of charcoal. The Journal of Physical Chemistry 1949, Vol. 53, pp. 669–683.
  • 18. R.V. CULVER, N.S. HEATH: Saran charcoals. Part 1 – Activation and adsorption studies. Transaction of the Faraday Society 1955, Vol. 51, pp. 1569–1575.
  • 19. H. MARSH, W.F.K. WYNNE-JONES: The surface properties of carbon – I. The effect of activated diffusion in the determination of surface area. Carbon 1964, Vol. 1, pp. 269–279.
  • 20. J.J. KIPLING, R.B. WILSON: Adsorptive properties of polymer carbons. Part 1 – Comparative data. Transaction of the Faraday Society 1960, Vol. 56, pp. 557–561.
  • 21. H.J. JUNG, Y.J. KIM, D.H. LEE, J.H. HAN, K.S. YANG, C.M. YANG: Pore structure characterization poly(vinylidene chloride)-derived nanoporous carbons. Carbon Letters 2012, Vol. 13, pp. 236–242.
  • 22. T.G. LAMOND, J.E. METCALFE, P.L. WALKER, Jr.: 6 Å molecular sieve properties of saran-type carbons. Carbon 1965, Vol. 3, pp. 59–63.
  • 23. I. FERNANDEZ-MORALES, A. GUERRERO-RUIZ, I.J. LOPEZ-GARZON, I. RODRIGUEZ-RAMOS, C. MORENO-CASTILLA: Adsorption capacity of Saran carbons at high temperatures and under dynamic conditions. Carbon 1984, Vol. 22, pp. 301–304.
  • 24. A. DZIURA, M. MARSZEWSKI, J. CHOMA, Ł. OSUCHOWSKI, L.K. DE SOUZA, M. JARONIEC: Saran-derived carbons for CO2 and benzene sorption at ambient conditions. Industrial & Engineering Chemistry Research 2014 (in press), DOI: 10.1021/ie5004448.
  • 25. J. CHOMA, M. JARONIEC, A. ZAWIŚLAK, J. GÓRKA: Synteza i właściwości adsorpcyjne koloidalnie odwzorowanych nanoporowatych węgli otrzymanych z kopolimeru chlorku winylidenu i chlorku winylu (Saran) (Synthesis and adsorption properties of colloid-templated nanoporous carbons obtained using vinylidene and vinyl chloride copolymer (Saran)). Ochrona Środowiska 2009, vol. 31, nr 1, ss. 3–7.
  • 26. K. LASZLO, A. BOTA, L.G. NAGY: Comparative adsorption study on carbons from polymer precursors. Carbon 2000, Vol. 38, pp. 1965–1976.
  • 27. K. LASZLO, A. BOTA, I. DEKANY: Effect of heat treatment on synthetic carbon precursors. Carbon 2003, Vol. 41, pp. 1205–1214.
  • 28. K. NAKAGAWA, S.R. MUKAI, T. SUZUKI, H. TAMON: Gas adsorption on activated carbon from PET mixtures with a metal salt. Carbon 2003, Vol. 41, pp. 823–831.
  • 29. A.M. PUZIY, O.I. PODDUBNAYA: The properties of synthetic carbon derived from nitrogen- and phosphorous-containing polymer. Carbon 1998, Vol. 36, pp. 45–50.
  • 30. S.J. PARK, W.Y. JUNG: Preparation of activated carbons derived from KOH-impregnated resin. Carbon 2002, Vol. 40, pp. 2021–2022.
  • 31. J. CHOMA, Ł. OSUCHOWSKI, M. MARSZEWSKI, M. JARONIEC: Highly microporous polymer-based carbons for CO2 and H2 adsorption. RSC Advances 2014, Vol. 4, pp. 14795–14802.
  • 32. J. CHOMA, M. JARONIEC, M. KLOSKE, A. ZAWIŚLAK: Mezoporowate materiały węglowe: Synteza z wykorzystaniem matryc krzemionkowych i charakterystyka właściwości adsorpcyjnych (Mesoporous carbon materials: Silica-templating synthesis and characterization of adsorption properties). Ochrona Środowiska 2008, vol. 30, nr 2, ss. 3–15.
  • 33. N. NISHIYAMA, T. ZHENG, Y. YAMANE, Y. EGASHIRA, K. UEYAMA: Microporous carbons prepared from cationic surfactant-resorcinol/formaldehyde composites. Carbon 2005, Vol. 43, pp. 269–274.
  • 34. M. KUBOTA, A. HATA, H. MATSUDA: Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon 2009, Vol. 47, pp. 2805–2811.
  • 35. J. GÓRKA, A. ZAWIŚLAK, J. CHOMA, M. JARONIEC: KOH activation of mesoporous carbons obtained by soft-templating. Carbon 2008, Vol. 46, pp. 1159–1174.
  • 36. C.D. LIANG, S. DAI: Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. Journal of the American Chemical Society 2006, Vol. 128, pp. 5316–5317.
  • 37. F.Q. ZHANG, Y. MENG, D. GU, Y. YAN, C.Z. YU, B. TU, D.Y. ZHAO: A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. Journal of the American Chemical Society 2005, Vol. 127, pp. 13508–13509.
  • 38. J. CHOMA, K. JEDYNAK, W. FAHRENHOLZ, J. LUDWINOWICZ, M. JARONIEC: Rozwijanie mikroporowatości w węglach mezoporowatych (Development of microporosity in mesoporous carbons). Ochrona Środowiska 2013, vol. 35, nr 1, ss. 3–10.
  • 39. T.C. DRAGE, A. ARENILLAS, K.M. SMITH, C. PEVIDA, S. PIIPPO, C.E. SNAPE: Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel 2007, Vol. 86, No. 1–2, pp. 22–31.
  • 40. G.P. HAO, W.C. LI, D. QIAN, A.H. LU: Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Advanced Materials 2010, Vol. 22, pp. 853–857.
  • 41. G.P. HAO, W.C. LI, D. QIAN, G.H. WANG, W.P. ZHANG, T. ZHANG, A.Q. WANG, F. SCHÜTH, H.J. BONGARD, A.H. LU: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society 2011, Vol. 133, pp. 11378–11388.
  • 42. J. WANG, I. SENKOVSKA, M. OSCHATZ, M.R. LOHE, L. BORCHARDT, A. HEERWIG, Q. LIU, S. KASKEL: Imin-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Applied Materials and Interfaces 2013, Vol. 5, pp. 3160–3167.
  • 43. J.R. PELS, F. KAPTEIJN, J.A. MOULIJN, Q. ZHU, K.M. THOMAS: Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, Vol. 33, pp. 1641–1653.
  • 44. M. SOBIESIAK, B. GAWDZIK, A.M. PUZIY, O.I. PODDUBNAYA: Analysis of structure and properties of active carbons and their copolymeric precursors. Applied Surface Science 2010, Vol. 256, pp. 5355–5360.
  • 45. N. COHEN, M.S. SILVERSTEIN: Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths. Polymer 2011, Vol. 52, pp. 282–287.
  • 46. Q. ZHAO, T.P. FELLINGER, M. ANTONIETTI, J. YUAN: A novel polymeric precursor for micro/mesoporous nitrogen-doped carbons. Journal of Materials Chemistry A 2013, Vol. 1, pp. 5113–5120.
  • 47. X. MA, R. SWAIDAN, B. TENG, H. TAN, O. SALINAS, E. LITWILLER, Y. HAN, I. PINNAU: Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon 2013, Vol. 62, pp. 88–96.
  • 48. D. PUTHUSSERI, V. ARAVINDAN, S. MADHAVI, S. OGALE: 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitor: The magic of in situ porogen formation. Energy and Environmental Science 2014, Vol. 7, pp. 728–735.
  • 49. S.Y. KIM, W.H. SUH, J.H. CHOI, Y.S. YI, S.K. LEE, G.D. STUCKY, J.K. KANG: Template-free synthesis of high surface area nitrogen-rich carbon microporous spheres and their hydrogen uptake capacity. Journal of Materials Chemistry A 2014, Vol. 2, pp. 2227–2232.
  • 50. C. HAN, J. WANG, Y. GONG, X. XU, H. LI, Y. WANG: Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A 2014, Vol. 2, pp. 605–609.
  • 51. W. KICIŃSKI, M. SZALA, M. BYSTRZEJEWSKI: Sulfur-doped porous carbons: Synthesis and application. Carbon 2014, Vol. 68, pp. 1–32.
  • 52. S. MISHRA, A.S. GOJE, V.S. ZOPE: Chemical recycling, kinetics, and thermodynamics of poly(ethylene terephthalate) (PET) waste powder by nitric acid hydrolysis. Polymer Reaction Engineering 2003, Vol. 11, pp. 79–99.
  • 53. M. DIAS, M.C.M. ALVIM-FERRAZ, M.F. ALMEIDA, J. RIVERA-UTRILLA, M. SANCHEZ-POLO: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management 2007, Vol. 85, pp. 833–846.
  • 54. M.A. MIGAHEAD, A.M. ABDUL-RAHEIM, A.M. ATTA, W. BROSTOW: Synthesis and evaluation of a new water soluble corrosion inhibitor from recycled poly(ethylene terephthalate). Materials Chemistry and Physics 2010, Vol. 121, pp. 208–214.
  • 55. K. LASZLO, A. BOTA, L.G. NAGY, I. CABASSO: Porous carbon from polymer waste materials. Colloids & Surface A: Physicochemical and Engineering Aspects 1999, Vol. 151, pp. 311–320.
  • 56. A. ARENILLAS, F. RUBIERA, J.B. PARRA, C.O. ANIA, J.J. PIS: Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science 2005, Vol. 252, pp. 619–624.
  • 57. M.T. KARTEL, N.V. SYCH, M.M. TSYBA, V.V. STRELKO: Preparation of porous carbons by chemical activation of polyethyleneterephthalate. Carbon 2006, Vol. 44, pp. 1019–1022.
  • 58. A. ESFANDIARI, T. KAGHAZCHI, M. SOLEIMANI: Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 2012, Vol. 43, pp. 631–637.
  • 59. W. BRATEK, A. ŚWIĄTKOWSKI, M. PAKUŁA, S. BINIAK, M. BYSTRZEJEWSKI, R. SZMIGIELSKI: Characteristic of activated carbon prepared from waste PET by carbon dioxide activation. Journal of Analytical and Applied Pyrolysis 2013, Vol. 100, pp. 192–198.
  • 60. K. BRATEK, W. BRATEK, M. KAŁUŻYŃSKI: Carbon adsorbents from waste ion-exchange resin. Carbon 2002, Vol. 40, pp. 2213–2220.
  • 61. V.K. GUPTA, A. NAYAK, S. AGARWAL, I. TYAGI: Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. Journal of Colloid and Interface Science 2014, Vol. 417, pp. 420–430.
  • 62. S. BRUNAUER, P.H. EMMETT, E. TELLER: Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 1938, Vol. 60, pp. 309–319.
  • 63. M. KRUK, M. JARONIEC: Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials 2001, Vol. 13, pp. 3169–3183.
  • 64. M. JARONIEC, K. KANEKO: Physicochemical foundations for characterization of adsorbents by using high-resolution comparative plots. Langmuir 1997, Vol. 13, pp. 6589–6596.
  • 65. M. KRUK, M. JARONIEC, K.P. GADKAREE: Nitrogen adsorption studies of novel synthetic active carbons. Journal of Colloid and Interface Science 1997, Vol. 192, pp. 250–256.
  • 66.  M.M. DUBININ: Adsorpcja i porowatość. WAT, Warszawa 1975.
  • 67. M. KRUK, M. JARONIEC, A. SAYARI: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 1997, Vol. 13, pp. 6267–6273.
  • 68. E.P. BARRETT, L.G. JOYNER, P.P. HALENDA: The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951, Vol. 73, pp. 373–380.
  • 69. J. LANDERS, G. YU. GOR, A.V. NEIMARK: Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Pysicochemical and Engineering Aspects 2013, Vol. 437, pp. 3–32.
  • 70. J. JAGIELLO, J. P. OLIVIER: 2D-NLDFT Adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 2013, Vol. 55, pp. 70–80.
  • 71. J. JAGIELLO, J. P. OLIVIER: Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 2013, Vol. 19, pp. 777–783.
  • 72. H.P. BOEHM, E. DIEHL, W. HECK, R. SAPPOK: Surface oxides of carbon. Angewandte Chemie International Edition 1964, Vol. 3, pp. 669–677.
  • 73. Z. LIU, Z. DU, H. SONG, C. WANG, F. SUBHAN, W. XING, Z. YAN: The fabrication of porous N-doped carbon from widely available urea – formaldehyde resin for CO2 adsorption. Journal of Colloid and Interface Science 2014, Vol. 416, pp. 124–132.
  • 74. J. CHOMA, D. JAMIOŁA, K. AUGUSTYNEK, M. MARSZEWSKI, M. GAO, M. JARONIEC: New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry 2012, Vol. 22, pp. 12636–12642.
  • 75. N.P. WICKRAMARATNE, M. JARONIEC: Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A 2013, Vol. 1, pp. 112–116.
  • 76. N.P. WICKRAMARATNE, M. JARONIEC: Activated carbon spheres for CO2 adsorption. ACS Applied Materials & Interfaces 2013, Vol. 5, pp. 1849–1855.
  • 77. J. CHOMA, W. FAHRENHOLZ, D. JAMIOŁA, J. LUDWINOWICZ, M. JARONIEC: Development of mesoporosity in carbon spheres obtained by Stöber method. Microporous and Mesoporous Materials 2014, Vol. 185, pp. 197–203.
  • 78. Y. ZHAO, X. LIU, K.X. YAO, L. ZHAO, Y. HAN: Superior capture of CO2 achieved by introduction extra-framework cations into N-doped microporous carbon. Chemistry of Materials 2012, Vol. 24, pp. 4725–4734.
  • 79. H. YANG, Z. XU, M. FAN, R. GUPTA, R.B. SLIMANE, A.E. BLAND, I. WRIGHT: Progress in carbon dioxide separation and capture: A review. Journal of Environmental Science 2008, Vol. 20, pp. 14–27.
  • 80. A. ZUKAL, S.I. ZONES, M. KUBU, T.M. DAVIS, J. CEJKA: Adsorption of carbon dioxide on sodium and potassium forms of STI zeolite. ChemPlusChem 2012, Vol.77, pp. 675–681.
  • 81. J. YU, Y. LE, B. CHENG: Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surface. RSC Advances 2012, Vol. 2, pp. 6784–6791.
  • 82. M.G. RABBANI, H.M. EL-KADERI: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chemistry of Materials 2012, Vol. 24, No. 8, pp. 1511–1517.
  • 83. M. BRODA, C.R. MÜLLER: Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon-gel-templated CO2 sorbents. Advanced Materials 2012, Vol. 24, pp. 3059–3064.
  • 84. K. SUMIDA, D.L. ROGOW, J.A. MASON, T.M. MC DONALD, E.D. BLOCH, Z.R. HERM, T.H. BAE, J.R. LONG: Carbon dioxide capture in metal-organic frameworks. Chemical Reviews 2012, Vol. 112, pp. 724–781.
  • 85. J. ZHOU, W. LI, Z. ZHANG, W. XING, S. ZHUO: Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons. RSC Advances 2012, Vol. 2, pp. 161–167.
  • 86. C.H. YU, C.H. HUANG, C.S. TAN: A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 2012, Vol. 12, pp. 745–769.
  • 87. R.E. MORRIS, P.S. WHEATLEY: Gas storage in nanoporous materials. Angewandte Chemie International Edition 2008, Vol. 47, pp. 4966–4981.
  • 88. L.K.C. DE SOUZA, N.P. WICKRAMARATNE, A.S. ELLO, M.J.F. COSTA, C.E.F. DA COSTA, M. JARONIEC: Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 2013, Vol. 65, pp. 334–340.
  • 89. S. HIMENO, T. KOMATSU, S. FUJITA: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical and Engineering Data 2005, Vol. 50, pp. 369–376.
  • 90. R. STRÖBEL, J. GARCHE, P.T. MOSELEY, L. JÖRISSEN, G. WOLF: Hydrogen storage by carbon materials. Journal of Power Sources 2006, Vol. 159, pp. 781–801.
  • 91. X.B. ZHAO, B. XIAO, A.J. FLETCHER, K.M. THOMAS: Hydrogen adsorption on functionalized nanoporous activated carbons. The Journal of Physical Chemistry B 2005, Vol. 109, pp. 8880–8888.
  • 92. A.W.C. van den BERG, C.O. AREAN: Materials for hydrogen storage: Current research trends and perspectives. Chemical Communications 2008, pp. 668–681.
  • 93. M. JORDA-BENYYTO, F. SUAREZ-GARCIA, D. LOZANO-CASTELLO, D. CAZORLA-AMOROS, A. LINARES-SOLANO: Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, Vol. 45, pp. 293–303.
  • 94. E. MOSIKA, R. MOKAYA: Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability. Energy and Environmental Science 2014, Vol. 7, pp. 427–434.
  • 95. H. WANG, Q. GAO, J. HU: High hydrogen storage capacity of porous carbons prepared by using activated carbon. Journal of the American Chemical Society 2009, Vol. 131, pp. 7016–7022.
  • 96. B. XU, S. HOU, G. CAO, M. CHU, Y. YANG: Easy synthesis of a high surface area, hierarchical porous carbon for high-performance supercapacitors. RSC Advances 2013, Vol. 3, pp. 17500–17506.
  • 97. L. BORCHARDT, M. OSCHATZ, S. KASKEL: Tailoring porosity in carbon materials for supercapacitor applications. Materials Horizont 2014, Vol. 1, pp. 157–168.
  • 98. B. XU, S. HOU, H. DUAN, G. CAO, M. CHU, Y. YANG: Ultramicroporous carbon as electrode material for supercapacitors. Journal of Power Sources 2013, Vol. 228, pp. 193–197.
  • 99. S.Y. LEE, S.J. PARK: Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride). Journal of Solid State Chemistry 2013, Vol. 207, pp. 158–162.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5087ccd9-2236-4c95-b297-def7d2cf1471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.