PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of the Physical and Thermal Properties of Glycidyl Azide Polymer Through the Formation of a Star-Shaped Polymer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycidyl azide polymer (GAP) is one of the most important binders in the preparation of propellants. One of the most important problems with this binder is its high glass transition temperature. In the present study, the physical and thermal properties of GAP were modified by the synthesis of a star shaped polymer. Dibromo end-functionalized two-arm polycaprolactone (PCL), (PCL)2-(Br)2, was synthesized by ring-opening polymerization (ROP) of ε-caprolactone monomer using 2,2-bis(bromomethyl)-1,3-propane diol as the initiator and stannous 2-ethylhexanoate as the catalyst. The bromines of the polymer were then replaced by azide groups by reaction with sodium azide (NaN3). The (PCL)2-(Br)2 was reacted with propargyl terminated polyepichlorohydrin (PTPECH) via a click reaction. Finally, (PCL)2-(PTPECH)2 was converted into (PCL)2-(GAP)2 by reaction with NaN3. 1H NMR, FT-IR and GPC studies revealed that (PCL)2-(GAP)2 was obtained. The thermal behaviour of this star polymer was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry. The results showed that (PCL)2-(GAP)2 decomposed in two stages. The first stage is related to degradation of the azide groups and the second stage was attributed to degradation of the PCL groups.
Rocznik
Strony
248--263
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Faculty of Science, Qom University, PO Box: 3716146611, Alghadir Blv. Qom, Iran
Bibliografia
  • [1] Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with Complex Architecture by Living Anionic Polymerization. Chem. Rev. 2001, 101(12): 3747-3792l; DOI: 10.1021/cr9901337.
  • [2] Inoue, K. Functional Dendrimers, Hyperbranched and Star Polymers. Prog. Polym. Sci. 2000, 25(4): 453-471; DOI: 10.1016/S0079-6700(00)00011-3.
  • [3] Heidarpour, R.; Alimohammadi, S.; Salehi, R.; Hemmati, S.; Taghvaei-Ganjali, S. Synthesis and Characterization of Novel Biocompatible Four-arm Star-shaped Copolymers by Using a New Tetramethacrylate Core. Fibers. Polym. 2014, 15(3): 465-471: DOI: 10.1007/s12221-014-0465-8.
  • [4] Doganci, E.; Gorur, M.; Uyanik, C.; Yilmaz, F. Synthesis of AB3‐type Miktoarm Star Polymers with Steroid Core via a Combination of “Click” Chemistry and Ring Opening Polymerization Techniques. J. Polym. Sci. Part A: Polym. Chem. 2014, 52(23): 3390-3399; DOI: 10.1002/pola.27406.
  • [5] Eren, O.; Gorur, M.; Keskin, B.; Yilmaz, F. Synthesis and Characterization of Ferrocene End-capped Poly(ε-caprolactone)s by a Combination of Ring-Opening Polymerization and “Click” Chemistry Techniques. React. Funct. Polym. 2013, 73(1): 244-253; DOI: 10.1016/j.reactfunctpolym.2012.10.009.
  • [6] Hadjichristidis, N. Synthesis of Miktoarm Star (μ‐Star) Polymers. J. Polym. Sci., Part A: Polym. Chem. 1999, 37(7): 857-871; DOI: 10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P.
  • [7] Kowalczuk-Bleja, A.; Sierocka, B.; Muszynski, J.; Trzebicka, B.; Dworak, A. Core-shell Polyacrylate and Polystyrene-block-Polyacrylate Stars. Polymer 2005, 46(19): 8555-8564; DOI: 10.1016/j.polymer.2005.03.104.
  • [8] Gunay, U.S.; Durmaz, H.; Gungor, E.; Dag, A.; Hizal, G.; Tunca, U. 3‐Miktoarm Star Terpolymers Using Triple Click Reactions: Diels-Alder, Copper‐catalyzed Azide‐Alkyne Cycloaddition, and Nitroxide Radical Coupling Reactions. J. Polym. Sci., Part A: Polym. Chem. 2012, 50(4): 729-735; DOI: 10.1002/pola.25828.
  • [9] Aloorkar, N.H.; Kulkarni, A.S.; Patil, R.A.; Ingale, D. Microsponges as Innovative Drug Delivery Systems. J. Int. J. Pharm. Sci. Nanotechnol. 2012, 5(1): 1675-1684; DOI: 10.37285/ijpsn.2012.5.1.2.
  • [10] Liu, Y.-Y.; Lan, S.; Xiao, L.-Q. Synthesis and Characterization of PNIPAm Core Cross‐Linked Star Polymers and Their Functionalization with Cyclodextrin. Macromol. Chem. Phys. 2015, 216(7): 749-760; DOI: 10.1002/macp.201400538.
  • [11] Gao, H.F.; Matyjaszewski, K. Arm-First Method as a Simple and General Method for Synthesis of Miktoarm Star Copolymers. J. Am. Chem. Soc. 2007, 129(38): 11828-11834; DOI: 10.1021/ja073690g.
  • [12] Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)‐Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41(14): 2596-2599; DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
  • [13] Binder, W.H.; Sachsenhofer, R. ‘Click’ Chemistry in Polymer and Material Science: An Update. Macromol. Rapid. Commun. 2008, 29(12-13): 952-981; DOI: 10.1002/marc.200800089.
  • [14] Lecomte, P.; Riva, R.; Jerome, C.; Jerome, R. Macromolecular Engineering of Biodegradable Polyesters by Ring‐Opening Polymerization and ‘Click’ Chemistry. Macromol Rapid Commun. 2008, 29(12-13): 982-997; DOI: 10.1002/marc.200800174.
  • [15] Francis, R.; Lepoittevin, B.; Taton, D.; Gnanou, Y. Toward an Easy Access to Asymmetric Stars and Miktoarm Stars by Atom Transfer Radical Polymerization. Macromolecules 2002, 35(24): 9001-9008; DOI: 10.1021/ma020872g.
  • [16] Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Miktoarm Star Copolymers of Poly(ε‐caprolactone) from a Novel Heterofunctional Initiator. J. Polym. Sci. Part A: Polym. Chem. 2007, 45(22): 5164-5181; DOI: 10.1002/pola.22261.
  • [17] Lorenzo, A.T.; Muller, A.J.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Synthesis and Morphological Characterization of Miktoarm Star Copolymers (PCL)2(PS)2 of Poly(ε‐caprolactone) and Polystyrene. J. Polym. Sci. Part A: Polym. Chem. 2007, 45(23): 5387-5397; DOI: 10.1002/pola.22283.
  • [18] Glaied, O.; Delaite, C.; Dumas, P. Synthesis of A2B2 Star Block Copolymers from a Heterotetrafunctional Initiator. J. Polym. Sci. Part A: Polym. Chem. 2007, 45(5): 968-974; DOI: 10.1002/pola.21838.
  • [19] Gou, P.F.; Zhu, W.P.; Xu, N.; Shen, Z.Q. Synthesis, Self‐assembly and Drug‐loading Capacity of Well‐defined Drug‐conjugated Amphiphilic A2B2 Type Miktoarm Star Copolymers Based on Poly(ε‐caprolactone) and Poly(ethylene glycol). J. Polym. Sci. Part A: Polym. Chem. 2009, 47(24): 6962-6976; DOI: 10.1002/pola.23736.
  • [20] Heise, A.; Trollsås, M.; Magbitang, T.; Hedrick, J.L.; Frank, C.W.; Miller, R.D. Star Polymers with Alternating Arms from Miktofunctional μ-Initiators Using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules 2001, 34(9): 2798-2804; DOI: 10.1021/ma0012954.
  • [21] He, T.; Li, D.J.; Sheng, X.; Zhao, B. Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom Transfer Radical Polymerization, and Nitroxide-Mediated Radical Polymerization. Macromolecules 2004, 37(9): 3128-3135; DOI: 10.1021/ma036010c.
  • [22] Yuan, Y.Y.; Wang, Y.C.; Du, J.Z.; Wang, J. Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and “Click” Chemistry. Macromolecules 2008, 41(22): 8620-8625; DOI: 10.1021/ma801452n.
  • [23] Wang, G.W.; Huang, J.L. Preparation of Star‐Shaped ABC Copolymers of Polystyrene‐Poly(ethylene oxide)‐Polyglycidol Using Ethoxyethyl Glycidyl Ether as the Cap Molecule. Macromol. Rapid Commun. 2007, 28(3): 298-304; DOI: 10.1002/marc.200600740.
  • [24] Kanaoka, S.; Sawamoto, M.; Higashimura, T. Star-shaped Polymers by Living Cationic Polymerization. 2. Synthesis of Amphiphilic Star-shaped Block Polymers of Vinyl Ethers with Hydroxyl Groups. Macromolecules 1991, 24(21): 5741-5745; DOI: 10.1021/ma00054a002.
  • [25] Baek, K.Y.; Kamigaito, M.; Sawamoto, M. Star Poly(methyl methacrylate) with End‐functionalized Arm Chains by Ruthenium‐catalyzed Living Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2002, 40(12): 1972-1982; DOI: 10.1002/pola.10279.
  • [26] Gao, H.F.; Matyjaszewski, K. Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method. Macromolecules 2006, 39(9): 3154-3160; DOI: 10.1021/ma060223v.
  • [27] Wiltshire, J.T.; Qiao, G.G. Degradable Core Cross-Linked Star Polymers via Ring-Opening Polymerization. Macromolecules 2006, 39(13): 4282-4285; DOI: 10.1021/ma060712v.
  • [28] Terashima, T.; Ouchi, M.; Ando, T.; Kamigaito, M.; Sawamoto, M. Amphiphilic, Thermosensitive Ruthenium(II)-Bearing Star Polymer Catalysts: One-Pot Synthesis of PEG Armed Star Polymers with Ruthenium(II)-Enclosed Microgel Cores via Metal-Catalyzed Living Radical Polymerization. Macromolecules 2007, 40(10): 3581-3588; DOI: 10.1021/ma062446r.
  • [29] Spiniello, M.; Blencowe, A.; Qiao, G.G. Synthesis and Characterization of Fluorescently Labeled Core Cross‐linked Star Polymers. J. Polym. Sci. Part A: Polym. Chem. 2008, 46(7): 2422-2432; DOI: 10.1002/pola.22576.
  • [30] Dag, A.; Durmaz, H.; Hizal, G.; Tunca, U. Preparation of 3‐Arm Star Polymers (A3) via Diels-Alder Click Reaction. J. Polym. Sci. Part A: Polym. Chem. 2008, 46(1): 302-313; DOI: 10.1002/pola.22381.
  • [31] Lapienis, G.; Wiktorska, B. Polystyrene Star‐shaped Polymers Containing Core Built from Diepoxides. J. Polym. Sci. Part A: Polym. Chem. 2008, 46(11): 3869-3875; DOI: 10.1002/pola.22733.
  • [32] Badgujar D.M.; Talawar M.B.; Asthana S.N.; Mahulikar P.P. Advances in Science and Technology of Modern Energetic Materials: An Overview. J. Hazard. Mater. 2008, 151(2-3): 289-305; DOI: 10.1016/j.jhazmat.2007.10.039.
  • [33] Provatas A. Energetic Plasticizer Migration Studies. J. Energ. Mater. 2003, 21(4): 237-245; DOI: 10.1080/713770435.
  • [34] Diaz E.; Brousseau P.; Ampleman G.; Prud’homme R.E. Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN. Propellants Explos. Pyrotech. 2003, 28(3): 101-106; DOI: 10.1002/prep.200390015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5083caf8-ab74-4284-ae25-84d1e0d61859
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.