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 Abstract—This paper was inspired by an article entitled “An 
approach to model high-frequency distortion in negative-
feedback amplifiers” by S. O. Cannizzaro, G. Palumbo, and S. 
Pennisi.  The objective of this presentation is to point out that 
some results presented therein are not so novel as argued. First, 
we point out here that an idea of partition of a nonlinear circuit 
into interconnected smaller basic blocks, used in the above paper 
under a name of an analytical approach, is not new. For the first 
time, it has been used in the literature by S. Narayanan, pioneer 
of the Volterra series usage in calculations of nonlinear distortion 
in electronic circuits, and afterwards by many others. Second, we 
show that descriptions of the basic blocks mentioned above follow 
from their more general representations by the Volterra series, 
specialized for harmonic inputs. Third, we recall references in 
which the joint and complementary elements as well as some 
invariants occurring in modelling of op amp inverting and non-
inverting configurations for the purpose of nonlinear distortion 
evaluation have been reported before publication of some similar 
results by S. O. Cannizzaro, G. Palumbo, and S. Pennisi. Finally, 
we show that an operator o that was introduced by the above 
authors in their paper can lead to calculation errors. Alternative 
approach to this point is presented. 

Index Terms—Harmonic distortion modelling and 
calculation, unified model for inverting and noninverting 
nonlinear op amp based circuits, Volterra series 

I. INTRODUCTION 

N [1], S.O. Cannizzaro, G. Palumbo, and S. Pennisi claim to 
develop a novel method, alternative to the Volterra series 

approach, that simplifies calculation of harmonic distortion in 
analog weakly nonlinear circuits. We show in this paper that 
their method cannot be regarded as an alternative because it 
follows directly form the descriptions by the Volterra series, 
which simplify for single harmonic signals. 

Moreover, we point out here that the concept of partition 
of a mildly nonlinear circuit into interconnected smaller basic 
blocks, used in [1] under a name of an analytical approach, is 
not novel. It was used in the literature for the first time by  
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S. Narayanan, pioneer of the Volterra series usage in 
calculations of nonlinear distortion in electronic circuits, in his 
papers [2-4] published at the late of 1960’s and the beginning 
of 1970’s. In 1974, J.J. Bussgang, L. Ehrman, and J.W. 
Graham applied this methodology, amongst other seminal 
ideas, in their nonlinear analyses based on the use of Volterra 
series. These analyses were presented in their paper [5]. Also, 
the author of this paper used the above concept, in the 1980’s 
in many articles [6-9]. 

Further, we show here that descriptions of the basic 
nonlinear blocks as given in [1] can be obtained via the so-
called nonlinear transfer functions [5]. Then, these transfer 
functions assume simpler forms because of kind of the circuit 
input signal, being a single harmonic in this case. 

Next, we recall some references [6], [7], [9], [22] in which 
the joint and complementary elements as well as some 
invariants occurring in modelling of op amp inverting and 
non-inverting configurations for the purpose of nonlinear 
distortion evaluation have been reported. Note that these 
results have been obtained before publication of some similar 
findings in [1]. 

Finally, we show here that an operator o introduced and 
used in papers [1], [11-13] can lead to calculation errors.  
A mathematically correct derivation of an alternative formula 
to that containing the above operator is presented in this 
article. It involves the usage of the Kronecker products [27]. 

The remainder of the paper is organized as follows. In 
Section II, we present the usage of basic nonlinear cascade and 
feedback structures in the analysis of more complicated 
nonlinear circuit topologies. In the next section, the topic of 
evaluation of harmonic and intermodulation distortion is 
discussed. Further, in section IV, some common and 
complementary elements in modelling of op amp inverting 
and non-inverting configurations are described. The next 
section is devoted to an operator o introduced in [1]. Finally,  
concluding remarks are summarized in section VI. 
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II. NONLINEAR TRANSFER FUNCTIONS OF CASCADE  
AND FEEDBACK STRUCTURES AND THEIR USAGE  

IN DESCRIPTION OF MORE COMPLICATED TOPOLOGIES 

Let us take into account two basic connections of weakly 
nonlinear elements with memory: cascade and feedback 
structures, as shown schematically in Figs. 1 and 2, 
respectively. 

The variables vi, v1, v2, and vf in the circuit schemes in 
Figs. 1 and 2 stand for the appropriate input and output signals 
of the circuit basic blocks H and K, and of the resulting circuit. 
They can mean voltage as well as current type signals, 
depending upon the type of transfer characteristics modeled. 
If, for example, the blocks H and K model voltage amplifiers, 
all the above variables will have meanings of voltages. 
Further, we assume here that the circuit basic elements 
(blocks) in Figs. 1 and 2 are weakly (mildly) nonlinear ones. 
Moreover, we assume that they are of strictly transferring 
type. That is they can be fully described by input-output type 
relations. 

 

Fig. 1. Cascade connection of two nonlinear circuit basic blocks, H and K. 

 
Fig. 2.  Feedback structure consisting of two nonlinear circuit basic blocks,  
H and K. 
 

Thus, taking into account the above two assumptions, we 
can describe the basic elements H and K by the Volterra series 
[5] as 
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for K.  Obviously for a linear system, the equations (1a) and 
(1b) are reduced to 
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which is well known formula which can be found in many 
textbooks. 

In (1a) and (2a), x and y correspond to iv  and 1v  in Figs. 1, 

and to 1v  and 2v  in Figs. 2, respectively. Similarly in (1b) and 

(2b), x and y correspond to 1v  and 2v  in Fig. 1, and to 2v  and 

fv  in Fig. 2, accordingly. ( )H x  and ( )K x  in (1a) and (1b) 

are the nonlinear operators with memory describing the basic 
elements H and K, respectively; they are expanded in the 
Volterra series in (1a) and (1b). Moreover, the variable t is a 
real time variable, but 

1 nτ τ, ...,  are artificial auxiliary ones. 

Furthermore, the functions ( )
1

n
nh τ τ( , ..., )  in (1a) and 
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n
nk τ τ( , ..., )  in (1b)  are the so-called nonlinear impulse 

responses of the n-th order [5] of the block H and K, 
respectively. For the linear case considered in (2a) and (2b), a 

simplified notation ( )1
1h hτ τ=( ) ( )  and ( )1

1k kτ τ=( ) ( )  is 

used.  
Note that the above functions can be transferred into the 

multidimensional frequency domains by using the 
multidimensional Fourier transforms defined as 
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where ( )

1( ,..., )n

nG f f  means the n-dimensional Fourier 

transform of a function 
1

( ) ( ,..., )n

ng τ τ  having n arguments.  

The transforms ( )

1( ,..., )n

nH f f  and ( )

1( ,..., )n

nK f f  obtained in 

such a way are the n-th order nonlinear transfer functions [5] 

of the circuit basic elements H and K. The variables 
1
, ..., nf f  

therein are the subsequent frequencies in the n-dimensional 
frequency space.  

Let us now describe the resulting circuit in Fig. 1 or in  
Fig. 2 by nonlinear operators ( )L x  and ( )M x , respectively. 

Obviously, these operators can be expanded in the Volterra 
series, similarly as ( )H x  and ( )K x  in (1a) and (1b). 

Further, nonlinear impulse responses ( )
1

n
nl τ τ( , .., )  and 

( )
1

n
nm τ τ( , .., )  associated with the Volterra series expansions 

of ( )L x  and ( )M x , respectively, can be transferred into the 

multi-dimensional frequency domains. Then, they will be 
called the nonlinear transfer functions of the corresponding 
orders of the cascade and feedback structures of Figs. 1 and 2, 

respectively. Let us denote them here as ( )

1( , ..., )n

nf fL  and 
( )

1( , ..., )n

nM f f , accordingly.  

Knowing the nonlinear transfer functions  ( )

1( ,..., )n

nH f f  

and ( )

1( ,..., )n

nK f f , one can derive the resulting transfer 

functions for the structures in Figs. 1 and 2. This was done, 
with the use of different methods, by many authors. We 
mention here some earlier publications [2-7], [9-10] on this 
topic.  
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Let us now present the final results of the above 
derivations  
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for the first three nonlinear transfer functions ( ) ( )
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for the first three nonlinear transfer functions ( ) ( )
1

1 ,M f  

( ) ( )
2

1 2, ,M f f  and ( ) ( )
3

1 2 3, ,M f f f  of the feedback structure. 

Moreover, note that ( ) ( )
1

1L f  and ( ) ( )
1

1M f  above mean 

standard linear transfer functions. That is the ones for which 
we usually use the following notation: ( )L f  and ( )M f . 

Finally, we point out at this point that, because a lack of space, 
the expressions (5b) and (5c) are  provided for the operator 

( )K x  being strictly linear. When this operator is nonlinear, 

the aforementioned expressions are notably longer. 

Consider now some mixed circuit structures consisting of 
both cascade and feedback type connections, which are shown 
in Figs. 3, 4, 5, 6, and 7. 

 
Fig. 3.  Cascade connection of two nonlinear circuit blocks, in which the first 
of them is a basic one and the second made up of a feedback structure 
connecting two nonlinear basic blocks. 
 

 
Fig. 4. Feedback structure made up of the resulting nonlinear circuit block 
shown in Fig. 3 and a nonlinear basic block K1.  
 

 
Fig. 5. Cascade structure made up of the resulting nonlinear circuit block 
shown in Fig. 4 and a nonlinear basic block H1. 
 

 

Fig. 6. Extended structure of Fig. 5 with a cascade connection of two 
nonlinear circuit basic blocks denoted as H2 and H3 instead of a basic block 
denoted as H2 in Fig. 5. 
 

 
Fig. 7. Modified structure of Fig. 4 with a feedback connection of two 
nonlinear circuit basic blocks denoted as H1 and K2 instead of a basic block 
denoted as H1 in Fig. 4. 

 

Observe first that the nonlinear transfer functions of all the 
structures shown in Figs. 3, 4, 5, 6, and 7, and of any of their 
derivatives, can be easily evaluated in a systematic way using 
the expressions evoked above for the basic cascade and 
feedback structures of Figs. 1 and 2. 
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Next, note that the structure shown in Fig. 3 is that which 
models the nonlinear behavior of negative-feedback amplifiers 
considered in [1]. Further, see that the structure of Fig. 5, 
which is the derivative of that in Fig. 4, was used in [13] to 
describe the weakly nonlinear two-stage Miller OTAs. 
Observe also that the extended structure of Fig. 6 was applied 
in [14] to model the nonlinear behavior of the Miller-
compensated three-stage amplifiers. 

The structure of Fig. 7 is an extension of that shown in  
Fig. 4 with an additional inner loop; it can be also useful in 
modelling mildly nonlinear multi-stage amplifiers [15].    

The above examples from the recent publications and also 
those cited in this section before show clearly that all practical 
mildly nonlinear circuits can be partitioned into interconnected 
smaller basic blocks. On the other way, these interconnected 
basic blocks form larger entities, interconnections of cascade 
and feedback structures. And the latter can be described with 
the use of the expressions determining their nonlinear transfer 
functions that are well known since works of Narayanan [2-4]. 

III. EVALUATION OF INTERMODULATION AND HARMONIC 

DISTORSION USING NONLINEAR TRANSFER FUNCTIONS 

Denote now the circuit nonlinear transfer functions of the 
first, second, and third order, related with the signal 

transmission from its input to its output, as ( ) ( )
1

1oH f , 

( ) ( )
2

1 2,oH f f , and ( ) ( )
3

1 2 3, ,oH f f f , respectively. As shown in 

the previous section, expressions determining these transfer 
functions can be evaluated for the most of practical nonlinear 
circuits in a simplified manner. This approach means: 

1. partition of a circuit scheme into smaller basic blocks; 

2. carrying out an analysis of interconnections between 
these blocks to find out all the cascade and feedback 
type connections; 

3. successive application of the expressions presented in 
section II to arrive finally at the nonlinear transfer 
functions of the whole circuit scheme.      

Since Narayanan [2-4], it is well known that the nonlinear 
transfer functions of a weakly nonlinear circuit can be used to 
calculate intermodulation distortion it generates, when a two 
tone harmonic signal ( )iv t   

 ( ) cos(2 ) cos(2 )i a a b bv t AMP f t AMP f tπ π= +  (6) 
 

with the frequencies   and   ,   where   /   / ,a b a bf f f f m n≠  

a bf f> , and the amplitudes   and  a bAMP AMP  is applied to 

its input. In this case, when we are interested, for example, in 
the output intermodulation products: of the second order at the 
frequency a bf f−  and of the third order at the frequency 

2 a bf f± , we must substitute 1 2,   a af f f f= = , and 3 bf f= −  

in the expressions determining the nonlinear transfer functions 
of a given circuit. For more explanation, see, for instance, [16] 
or [17]. 

In consideration of weakly nonlinear circuits, we usually 
restrict ourselves to taking into account only nonlinear transfer 
functions of the first three orders (including the linear one). 

Then, referring to our aforementioned example, we have the 
following expressions [6], [17] 
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for the intermodulation distortion factors of the second order 

IM2 and of the third order IM3, respectively. In (7), ( )oAMP ⋅  

means the amplitude of the circuit output signal component at 

the corresponding frequency, and ( ) ( )
1

o aH f , ( ) ( )
2 ,o a bH f f−  

and ( ) ( )
3 , ,o a a bH f f f−  are the circuit nonlinear transfer 

functions of the first, second and third order, respectively, 
relating its output with its input and calculated for the 
corresponding values of their arguments. 

By applying a single tone harmonic signal ( )iv t  of the form  

 ( ) cos(2 )i s sv t AMP f tπ=  (8) 
 

to the input of a mildly nonlinear circuit, we concentrate on 
harmonic distortion generated by this circuit. Such an 
approach to quantify nonlinear distortion is represented in 
papers [1] and [11-14]; the authors of these articles 
concentrate exclusively on the harmonic distortion factors. 

In (8), AMPs and fs mean the amplitude of a single tone 
harmonic signal and its frequency, respectively. 

With the input signal given by (8), the expressions 
determining the circuit harmonic distortion factors of the 
second order H2 and of the third order H3 have the following 
form 
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respectively. In (9), ( )sAMP ⋅  stands for the amplitude of the 

circuit output signal component at the corresponding 
frequency. Moreover, note that the expressions (9) indicate 
that we have to substitute 1 2,   s sf f f f= = , and 3 sf f=  in the 

expressions determining the nonlinear circuit input-output 
transfer functions. 

Looking at the expressions (7) and (9), we see that we need 
to know the circuit nonlinear transfer functions for evaluation 
of its nonlinear distortion factors IM2, IM3, H2, and  H3. This 
is crucial here: the knowledge of the expressions determining 
the aforementioned functions. More generally, knowing them, 
we can evaluate any other measure of the nonlinear distortion 



as, for example, the cross-modulation distortion factor [18], 
the third order input intercept point IIP3 [19], the so-called 1 
dB compression point (in short, 1 dBc point) [20] and others 
used in the literature. 

In [1], the harmonic distortion factors H2 and H3 defined 
by the left-hand side equalities in (9) (strictly saying, their non-
logarithmic versions) were expressed by coefficients ( )1 sa jω , 

( )2 sa jω , and ( )3 sa jω , named “the first (linear), second-, and 

third-order nonlinearity transfer functions”, respectively. In the 
above definition, the word “nonlinearity” is generic and can 
mean a nonlinear circuit basic block, a cascade connection, and 
a feedback connection. Moreover, 2s sfω π= . Therefore, we 

will use, in what follows, the following notation: ( )1x sa f , 

( )2x sa f , and ( )3x sa f  with the index  x  standing for a generic 

name to denote a particular basic circuit block or a particular 
cascade connection or a particular feedback connection. The 
same notational convention will also regard the Volterra series 

based nonlinear transfer functions ( ) ( )
1

x sH f , ( ) ( )
2 ,x s sH f f , and 

( ) ( )
3 , ,x s s sH f f f  that we will use in further considerations. 

The coefficients ( )1x sa f , ( )2x sa f , and ( )3x sa f  were 

evaluated in [1] using the elements of phasor and harmonics 
balance theories, without referring to the Volterra series theory. 
However, it has been shown in [21] that these coefficients can 
be expressed by the Volterra series based nonlinear transfer 
functions. Then, the following equalities: ( ) ( ) ( )

1
1x s x sa f H f= , 

( ) ( ) ( )
2

2 ,x s x s sa f H f f= , and ( ) ( ) ( )
3

3 , ,x s x s s sa f H f f f=  hold.  

Assume now that the frequency fs in the coefficients  

( )1x sa f , ( )2x sa f , and ( )3x sa f  changes its value. So, it 

becomes a variable; denote it as  f. Then, we can write  

( )2xa f  and ( )3xa f , indicating clearly that they are functions 

of only one variable. They are conceptually functions of only 
one variable, see the theory presented in [1], [11-14]. On the 
contrary, the Volterra series based nonlinear transfer functions 

( ) ( )
2

1 2,xH f f  and ( ) ( )
3

1 2 2, ,xH f f f  [5], [16] are functions of 

two variables 1 2,  f f  or of three variables 1 2 2,  ,  f f f , 

respectively. Further, note that the above makes the 
fundamental difference between the latter and former ones. 
And the following statement is true. 

Statement 1. It is not possible to determine the Volterra series 
based nonlinear transfer functions ( ) ( )

2
1 2,xH f f and 

( ) ( )
3

1 2 2, ,xH f f f  of a nonlinear circuit element (block) from the 

functions ( )2 xa f  and ( )3xa f  known for this circuit (block). 

However, the opposite is true. 
Having in mind the previous discussions and taking into 

account also the Statement 1, we can formulate the next 
statement. 

Statement 2. The method developed in [1], [11-14] for mildly 
nonlinear circuits can be viewed as a simplified Volterra series 
based analysis that is restricted to evaluation of the harmonic 
distortion. 

Finally, it is clear from the above that most of the 
nonlinear distortion measures, as for example the 
intermodulation and cross-modulation distortion factors, 
cannot be calculated within the approach described in [1],  
[11-14]. For their evaluation, we need to use more general 
tools as, for example, the Volterra series descriptions of 
nonlinear circuit elements. 

IV. JOINT AND COMPLEMENTARY ELEMENTS IN MODELLING 
OF OP AMP INVERTING AND NON-INVERTING CONFIGURATIONS 

In articles [6], [7], [9], [22], the nonlinear distortions in 
form of harmonics and/or intermodulation products and/or 
basic harmonic compression in single-amplifier active filters 
have been measured and evaluated with the use of the Volterra 
series. Op amp with resistive feedback circuitry was applied to 
build the filter amplifier. This amplifier worked in a nonlinear 
region of op amp characteristics. And this was the region of 
dominance of the so-called slew-rate nonlinearity. Both the 
inverting and non-inverting configurations of op amp with  the 
resistive feedback loop were investigated. To model the filter 
amplifier, that is to calculate its nonlinear transfer functions, 
the structure of Fig. 2 was used. Further, to calculate the 
nonlinear transfer functions of the whole filter, the model 
shown in Fig. 3 was applied. It has been found that some 
components occurring in the expressions determining the IM2, 
IM3, H2, and  H3 for the whole filter, which depend 
exclusively upon the nonlinear transfer functions of the filter 
amplifier, are approximately independent of the kind of op 
amp configuration used. So, these components are the 
invariants for the above class of filters. Certainly, similar 
invariants can be found for other active filter topologies. 

Additionally, it has been shown in [22] that the nonlinear 
transfer functions of the aforementioned op amp 
configurations are related to each other for the complementary 
single-amplifier filters through the complementary relations 
derived therein. 

Active filters are often designed with the use of both the op 
amp inputs, inverting and non-inverting one. Each of them is 
then connected with the filter output via a feedback loop. We 
point here that there is in this case a more useful structure than 
that used in [1] as well as in [6], [7], [9], [22], which can be 
applied for the analysis. On the other hand, it is also more 
general than the aforementioned ones. It was already exploited 
by the author of this paper in [23] and is presented in Fig. 8. 

 
Fig. 8. Circuit structure using op amp as a basic element three-terminal element 
and with two feedback loops associated with its inverting and non-inverting 
inputs. 
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V. OPERATOR  O  REVISITED 

In [1], an operator o has been introduced. Its definition was 
formulated therein in such a way: “Let 

 

( ) ( ) ( ) ( )1 2 3exp 2 exp 2 2 exp 2 3s s sx t X j f t X j f t X j f tπ π π= + +  (10) 

  
be the complex valued signal consisting of three harmonics: 
the fundamental of frequency fs, the second, and third one that 
is applied to a weakly nonlinear circuit. In (10), X1, X2, and X3, 
mean generally complex amplitudes of the above harmonics.   
Then, the signal at its output will be given by 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

1 2 3x s x s x sy t x t o a f a f x t a f x t= + + , (11) 

 
where the operator “o” means that the functions which appear 
within the square brackets must be evaluated at the frequency 
of the incoming signal. This operator must be used whenever 
we evaluate the output of a nonlinear block.”   

We see that the above definition is not mathematically 
clear and highly imprecise. So, its usage can lead to 
misleading results. 

Consider now this problem in more detail. To this end, we 
will write the Volterra series representation modelling a 
weakly nonlinear circuit, as for example given by (1a), using 
the operator terminology. That is we will assume that an 
operator ( )( )H x t  stands for this representation, similarly as 

in [24] or [25]. Moreover, we will assume that it can be 
expressed in form of a sum of operators working on the input 
signal ( )x t . That is ( )( )H x t  will be given by 

 
( ) ( )( ) ( )( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
2 3

1 2 3 ...

y t H x t H x t

H H H x t

= = =

= + ⋅ + ⋅ +

, (12)  

 

where the meaning of 
1H , 

2H , and 
3H  differs now from that 

used in the previous sections. Namely, they mean now the first 
three components of the operator series. They can be also 
viewed as the operators of the first, second, and third order 
(and of higher orders regarding the next ones in (12)) in the 
equivalent Volterra series (12); for more details, see [25].  
 Substituting ( )x t  given by (10) into (12) leads to getting 

the following 
 

 

( ) ( ) ( ) ( )(

( )) ( ) ( )(

( ) ( ))

( ) ( )( ( )

( ))

1 1 2

3 2 1

2

2 3

3 1 2

3

3

exp 2 exp 2 2

   exp 2 3 exp 2

   exp 2 2 exp 2 3

    + exp 2 exp 2 2

   exp 2 3 ...  .

s s

s s

s s

s s

s

y t H X j f t X j f t

X j f t H X j f t

X j f t X j f t

H X j f t X j f t

X j f t

π π

π π

π π

π π

π

= + +

+ + +

+ + +

+ +

+ +

 (13) 

 
In the next step, after performing the operations of 
multiplication indicated in (13) and carrying out also the 
convolutions associated with the operators H1, H2, and H3, we 
get 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1
1

1
2 3

2
1 1

2
1 2

2
2 1

exp 2 2

 exp 2 2 3 exp 2 3

  , exp 2

 exp 2 , 2 exp 2

exp 2 2 2 , exp 2 2

 exp 2

  +components containing the product 

s s s

s s s

s s s

s s s s

s s s s

s

y t H f X j f t H f

X j f t H f X j f t

H f f X X j f t

j f t H f f X X j f t

j f t H f f X X j f t

j f t

π

π π

π

π π

π π

π

= + ⋅

⋅ + +

+ ⋅

⋅ + ⋅

⋅ + ⋅

⋅ +

( ) ( ) ( ) ( )

( )

3
1 1 1

frequencies

  greater than 3  

 , , exp 2 exp 2

 exp 2

 components containing the product frequencies

 greater than 3  ,

s

s s s s s

s

s

f

H f f f X X X j f t j f t

j f t

f

π π

π

+

+ ⋅

⋅ +

+

 (14) 

 

where the nonlinear transfer functions ( )1H , ( )2H , and ( )3H , 
calculated for the corresponding sets of frequencies, 
correspond with the operators H1, H2, and H3, respectively. 

Observe now that (14) derived with the use of the Volterra 
series is an alternative expression to (11). The next remark is 
the following: it is, however, difficult to recognize in (14) the 
form of the formula represented by (11) of an operator 
working on x(t). 

In what follows, we will try to write down (14) in a shorter 
form by applying the vectors, matrices, and Kronecker 
products. And for this task, let us define the following vectors 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1  2   3s s sH f H f H f=

1H  , (15a) 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2

2 2 2

,   , 2   ,3

  2 ,   2 , 2   2 ,3

  3 ,   3 , 2   3 ,3  

s s s s s s

s s s s s s

s s s s s s

H f f H f f H f f

H f f H f f H f f

H f f H f f H f f

=H
  , (15b) 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3

3 3 3

, ,   , , 2   , ,3

  , 2 ,   , 2 ,2   , 2 ,3

s s s s s s s s s

s s s s s s s s s

H f f f H f f f H f f f

H f f f H f f f H f f f

=H  (15c) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3

3 3 3

3 3 3

3 3 3

3 3

  ,3 ,   ,3 , 2   ,3 ,3

  2 , ,   2 , , 2   2 , ,3

  2 , 2 ,   2 , 2 , 2   2 , 2 ,3

  2 ,3 ,   2 ,3 , 2   2 ,3 ,3

  3 , ,   3 , , 2   

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s s s

H f f f H f f f H f f f

H f f f H f f f H f f f

H f f f H f f f H f f f

H f f f H f f f H f f f

H f f f H f f f H ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3

3 3 3

3 3 3

3 , ,3

  3 , 2 ,   3 , 2 , 2   3 , 2 ,3

  3 ,3 ,   3 ,3 , 2   3 ,3 ,3

s s s

s s s s s s s s s

s s s s s s s s s

f f f

H f f f H f f f H f f f

H f f f H f f f H f f f

     , 

 
and 
 

 
( )

( )

( )

1

2

3

exp 2

exp 2 2

exp 2 3

s

s

s

X j f t

X j f t

X j f t

π

π

π

=x   . (15d) 



The vectors ( )1H , ( )2H , and ( )3H  given by (15a), (15b), and 
(15c), respectively, are the row vectors, but the vector x  given 
by (15d) is a column one. The former gather the linear and 
nonlinear transfer functions of the second and third order 
calculated at all the possible products of frequencies occurring 
in the input signal (10), taking into account also their positions 
as arguments in the aforementioned transfer functions. 
Further, x  is a vector description of the input signal given by 
(10). 

In the next step, observe that all the products of the 
components of the input signal (10), which occur in (14), can 
be expressed in a compact form with the use of the Kronecker 
formalism [27]. That is as the Kronecker products [27] of the 
vector x  given by(15d). For example, for the products of the 
second order of the vector elements, we get 
 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1

2 2

3 3

1

1 2

3

1

2 2

3

exp 2 exp 2

exp 2 2 exp 2 2

exp 2 3 exp 2 3

exp 2

exp 2 exp 2 2

exp 2 3

exp 2

exp 2 2 exp 2 2

exp 2 3

s s

s s

s s

s

s s

s

s

s s

s

X j f t X j f t

X j f t X j f t

X j f t X j f t

X j f t

X j f t X j f t

X j f t

X j f t

X j f t X j f t

X j f t

π π

π π

π π

π

π π

π

π

π π

π

⊗ = ⊗ =

=

x x

( )

( )

( )

( )

1

3 2

3

exp 2

exp 2 3 exp 2 2

exp 2 3

s

s s

s

X j f t

X j f t X j f t

X j f t

π

π π

π

, (16) 

 

where the symbol ⊗  stands for the right Kronecker product 
[27]. And finally, after carrying out all the multiplications of 
the vectors by functions indicated on the most right-hand side 
of (16), we arrive at 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1 2

1 3

2 1

2 2

2 3

3

3 2

3 3

exp 2 exp 2

exp 2 exp 2 2

exp 2 exp 2 3

exp 2 2 exp 2

exp 2 2 exp 2 2

exp 2 2 exp 2 3

exp 2 3 exp 2

exp 2 3 exp 2 2

s s

s s

s s

s s

s s

s s

s s

s s

X X j f t j f t

X X j f t j f t

X X j f t j f t

X X j f t j f t

X X j f t j f t

X X j f t j f t

X j f t j f t

X X j f t j f t

X X

π π

π π

π π

π π

π π

π π

π π

π π

⋅

⋅

⋅

⋅

⊗ = ⋅

⋅

⋅

⋅

x x

( ) ( )exp 2 3 exp 2 3s sj f t j f tπ π⋅

  . (17) 

 
Similarly, by calculating ⊗ ⊗x x x , one gets all the third 

order products of the elements of the vector x  put into one 
vector. That is she/he gets the following 
 

( ) ( ) ( )1 1 1

     

exp 2 exp 2 exp 2

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

s s sX X X j f t j f t j f tπ π π

⊗ ⊗ =

⋅ ⋅

=

x x x

( ) ( ) ( )1 3 2

 .  .  .  .

exp 2 exp 2 3 exp 2 2

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

s s sX X X j f t j f t j f tπ π π⋅ ⋅

( ) ( ) ( )3 3 3

  .  .  .  .

exp 2 3 exp 2 3 exp 2 3s s sX X X j f t j f t j f tπ π π⋅ ⋅

 . (18) 

 
Now, observe that using (15a), (15b), (15c), (15d), (17), 

and (18) we can express (14) as a sum of the scalar products of 
these vectors. So, the formula will be the following 
 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 3y t t t t= ⋅ + ⋅ ⊗ + ⋅ ⊗ ⊗
1H x H x x H x x x  . (19)  

 
Note that this formula is a compact representation of (14). Its 
form resembles the form of the expression (11). However, it is 
still difficult to deduce from it a mathematically correct 
definition of the operator o occurring in (11). 

The analyses presented in [1] and [11-13] were restricted 
to considering only the first three harmonic components in 

( )y t , occurring at the frequencies 
sf , 2 sf , and 3 sf . Note 

that this corresponds to approximating ( )y t  in (14) by 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1

1
2 3

2
1 1

2
1 2

2
2 1

exp 2 2

 exp 2 2 3 exp 2 3

  , exp 2 exp 2

,2 exp 2 exp 2 2

2 , exp 2 2 exp 2

s s s

s s s

s s s s

s s s s

s s s s

y t H f X j f t H f

X j f t H f X j f t

H f f X X j f t j f t

H f f X X j f t j f t

H f f X X j f t j f t

π

π π

π π

π π

π π

= + ⋅

⋅ + +

+ ⋅ +

+ ⋅ +

+ ⋅ +

, (20) 

 
( ) ( ) ( ) ( )

( )

3
1 1 1, , exp 2 exp 2

 exp 2

s s s s s

s

H f f f X X X j f t j f t

j f t

π π

π

+ ⋅

⋅

  

 

where ( )y t  means the approximated value of ( )y t  in the 

sense given above. Further, see that using the filtering 
terminology we can interpret this as filtering out the first three 
harmonics from the signal ( )y t . Obviously, this procedure 

can be also applied to the compact description (19). See that 
we achieve this goal by setting to zero all the elements in the 
vectors given by (15a), (15b), and (15c) whose sums of 
arguments are greater than 3 sf . (Note that these elements are 

the nonlinear transfer functions calculated for given sets of 
frequencies.) 

Then, the modified vectors (15a), (15b), and (15c), denoted 

here by ( )ˆ 1H , ( )2Ĥ , and ( )3Ĥ , respectively, will have the 
following form 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1ˆ   2   3s s sH f H f H f= =

1 1H H  , (21a) 

 



 
( ) ( ) ( ) ( ) ( )

( ) ( ) ]

2 2 2

2

ˆ ,   , 2    0

 2 ,    0   0   0   0   0  

s s s s

s s

H f f H f f

H f f

=H   , (21b) 

 

and 
 

 

( ) ( ) ( )

]

3 3 , ,    0   0   0   0   0

   0   0   0   0   0   0   0   0   0   0   0

   0   0   0   0   0   0   0   0   0   0

s s sH f f f=H
   . (21c) 

 

And finally, with the use of the row vectors ( )ˆ 1H , ( )2Ĥ , and 
( )3Ĥ , defined above, it will be possible to write (20) in the 

following compact form 
 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 3ˆ ˆ ˆŷ t t t t= ⋅ + ⋅ ⊗ + ⋅ ⊗ ⊗
1H x H x x H x x x  . (22) 

  

VI. CONCLUDING REMARKS 

It has been shown in this paper that some recently 
published results concerning evaluation of the harmonic 
distortion in weakly nonlinear circuits need reviewing in view 
of the older ones. The basic lines for such a reviewing have 
been sketched here. Detailed analyses, in opinion of the author 
of this paper, are still desired and could be a subject, for 
example, of a Ph. D. E. E. thesis. 

Finally, we note also that this paper was based on the 
material presented at the conference MIXDES’2016 [26]. 
Extension of the material presented here regards derivations 
and discussions of section V. Among others, a new correct 
formula for calculation of the output signal of a mildly 
nonlinear circuit driven by an input signal of the form given 
by (10) was derived. It was derived with the use of the 
Volterra series and Kronecker products, and possesses a 
compact form. 
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