PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spreading properties of a multi-Gaussian Schell-model vortex beam in slanted atmospheric turbulence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cross-spectral density function of a multi-Gaussian Schell-model vortex (MGSMV) beam propagating through slanted atmospheric turbulence was derived, and the influences of the MGSMV beam parameter and slanted atmospheric turbulence on the spreading properties of a MGSMV beam are studied. One can find that a MGSMV beam propagating in slanted atmospheric turbulence can evolve into the flat-topped beam, and a MGSMV beam with larger index N and topological charge M propagating in slanted atmospheric turbulence will lose the dark hollow center and evolve into the Gaussian beam more slowly than the MGSMV beam with smaller index N and topological charge M. It is also found that a MGSMV beam propagating in slanted atmospheric turbulence with larger strucutre parameter C will evolve into Gaussian beam faster, but the influences of zenith angle α on the spreading properties of MGSMV beam in the far field can be ignored.
Czasopismo
Rocznik
Strony
83--94
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun, 130022, China
autor
  • National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun, 130022, China
autor
  • National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun, 130022, China
  • School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
autor
  • National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun, 130022, China
Bibliografia
  • [1] WANG F., LIU X., CAI Y., Propagation of partially coherent beam in turbulent atmosphere: a review (invited review), Progress in Electromagnetics Research 150, 2015, pp. 123–143, DOI:10.2528/PIER15010802.
  • [2] LIU D., WANG Y., Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence, Applied Physics B 124, 2018, article 176, DOI:10.1007/s00340-018-7048-0.
  • [3] LI N., CHU X., ZHANG P., FENG X., FAN C., QIAO C., Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics, Optics and Laser Technology 98, 2018, pp. 7–11, DOI:10.1016/j.optlastec.2017.07.028.
  • [4] LIU D., WANG Y., YIN H., Average intensity of four-petal Gaussian beams through paraxial optical system in atmosphere turbulence, Optik 127(6), 2016, pp. 3225–3229, DOI:10.1016/j.ijleo.2015.12.084.
  • [5] LIU D., WANG Y., YIN H., Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere, Optics and Laser Technology 78, 2016, pp. 95–100, DOI:10.1016/j.optlastec.2015.10.004.
  • [6] LIU D., WANG Y., WANG G., YIN H., Intensity properties of flat-topped vortex hollow beams propagating in atmospheric turbulence, Optik 127(20), 2016, pp. 9386–9393, DOI:10.1016/j.ijleo.2016.07.026.
  • [7] WANG F., LI J., MARTINEZ-PIEDRA G., KOROTKOVA O., Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere, Optics Express 25(21), 2017, pp. 26055–26066, DOI:10.1364/OE.25.026055.
  • [8] WANG K.L., ZHAO C.H., Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere, Optics and Laser Technology 57, 2014, pp. 44–51, DOI:10.1016/j.optlastec.2013.09.037.
  • [9] LIU D., LUO X., WANG G., WANG Y., Spectral and coherence properties of spectrally partially coherent Gaussian Schell-model pulsed beams propagating in turbulent atmosphere, Current Opticsand Photonics 1(4), 2017, pp. 271–277.
  • [10] LIU D., WANG Y., Evolution properties of a radial phased-locked partially coherent Lorentz–Gaussarray beam in oceanic turbulence, Optics and Laser Technology 103, 2018, pp. 33–41, DOI:10.1016/j.optlastec.2018.01.014.
  • [11] LIU D., WANG Y., ZHONG H., Average intensity of radial phased-locked partially coherent standard Hermite-Gaussian beam in oceanic turbulence, Optics and Laser Technology 106, 2018, pp. 495–505,DOI:10.1016/j.optlastec.2018.05.015.
  • [12] LIU H.L., LÜ Y.F., XIA J., CHEN D., HE W., PU X.Y., Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium, Optics Express 24(17), 2016, pp. 19695–19712, DOI:10.1364/OE.24.019695.
  • [13] TIAN H.H., XU Y.G., YANG T., MA Z.R., WANG S.J., DAN Y.Q., Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path, Journal of Modern Optics 64(4), 2017, pp. 422–429, DOI:10.1080/09500340.2016.1241441.
  • [14] YIN X., ZHANG L.C., Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path, Journal of the Optical Society of America A 33(7), 2016, pp. 1348–1352, DOI:10.1364/JOSAA.33.001348.
  • [15] GAO M., LI Y., LV H., GONG L., Polarization properties of polarized and partially coherent electro-magnetic Gaussian–Schell model pulse beams on slant path in turbulent atmosphere, Infrared Physics and Technology 67, 2014, pp. 98–106, DOI:10.1016/j.infrared.2014.06.008.
  • [16] WU H.Y., LI X., SHENG S., HUANG Z.S., HUANG S.H., ZHAO S.Q., WANG H., SUN Z.H., XU X.G., Properties of the flattened-vortex beam with aperture propagating through the turbulent atmosphere in a slant path, Optical Engineering 52(7), 2013, article 077105, DOI:10.1117/1.OE.52.7.077105.
  • [17] ZHANG L.C., YIN X., ZHU Y., Polarization fluctuations of partially coherent Hermite–Gaussianbeams in a slant turbulent channel, Optik 125(13), 2014, pp. 3272–3276, DOI:10.1016/j.ijleo.2013.12.045.
  • [18] CANG JI, ZHANG YI-XIN, The propagation properties of J0-correlated partially coherent beams in the slant atmosphere, Acta Physica Sinica–Chinese Edition 58(4), 2009, pp. 2444–2450, DOI:10.7498/aps.58.2444.
  • [19] ZHANG Y.-X., WANG Y.-G., XU J.-C., WANG J.-Y., JIA J.-J., Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel, Optics Communications 284(5), 2011, pp. 1132–1138, DOI:10.1016/j.optcom.2010.10.077.
  • [20] KE XI-ZHENG, CHEN JUAN, YANG YI-MING, Study on orbital angular momentum of Laguerre–Gaussianbeam in a slant-path atmospheric turbulence, Acta Physica Sinica–Chinese Edition 63(15), 2014, article 150301, DOI:10.7498/aps.63.150301.
  • [21] CHU X.X., LIU Z.J., WU Y., Propagation of a general multi-Gaussian beam in turbulent atmosphere in a slant path, Journal of the Optical Society of America A 25(1), 2008, pp. 74–79, DOI:10.1364/JOSAA.25.000074.
  • [22] ZHOU Y.J., ZHAO D.M., Propagation properties of a twisted rectangular multi-Gaussian Schell-model beam in free space and oceanic turbulence, Applied Optics 57(30), 2018, pp. 8978–8983, DOI:10.1364/AO.57.008978.
  • [23] TANG M., ZHAO D., LI X., WANG J., Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence, Optics Communications 407, 2018, pp. 392–397, DOI:10.1016/j.optcom.2017.09.067.
  • [24] WANG X., YAO M., YI X., QIU Z., LIU Z., Spreading and evolution behavior of coherent vortices of multi-Gaussian Schell-model vortex beams propagating through non-Kolmogorov turbulence, Optics and Laser Technology 87, 2017, pp. 99–107, DOI:10.1016/j.optlastec.2016.08.003.
  • [25] ZHANG H., FU W., Polarization properties of square multi-Gaussian Schell-model beam propagating through non-Kolmogorov turbulence, Optik 134, 2017, pp. 161–169, DOI:10.1016/j.ijleo.2017.01.045.
  • [26] ZHANG Y.T., LIU L., ZHAO C.L., CAI Y.J., Multi-Gaussian Schell-model vortex beam, Physics LettersA 378(9), 2014, pp. 750–754, DOI:10.1016/j.physleta.2013.12.039.
  • [27] DOU L., JI X., LI P., Propagation of partially coherent annular beams with decentered field in turbulence along a slant path, Optics Express 20(8), 2012, pp. 8417–8430, DOI:10.1364/OE.20.008417.
  • [28] XU J.-C., ZHANG Y.-X., WANG J.-Y., JIA J.-J., Detection probability of single photons in a slant path atmospheric turbulence communication channel, Optik 122(7), 2011, pp. 586–590, DOI:10.1016/j.ijleo.2010.04.015.
  • [29] JEFFREY A., HUI DAI, Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press,2008.
  • [30] DONG K.Y., DONG Y., SONG Y.S., CHANG S., The properties of anomalous hollow beam propagating in the slant atmosphere, Optik 172, 2018, pp. 1040–1046, DOI:10.1016/j.ijleo.2018.07.127.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-507f6715-9483-43e3-a010-c2d57c0c674e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.